Nam Sekong

Map of River

Table of Basic Data

Name(s): Sekong		Serial No. : Lao-9				
Location: South-east Lao PDR	E 106° 16' - 107° 29'	N 14° 41' - 16° 20'				
Area: 10,500 km ²	Length of the main stream	1 : 170 km (Attapu)				
Origin: Lao-Vietnam border 1,800 m	Highest Pt: Ban Tane, 2,00	66 m				
Outlet: ATTAPU, Muang Mai	Lowest Pt: Attapu, 106 m					
Main base rock: Mesozoic to Paleozoic, Sandstones and volcanic rock						
Main tributaries: Xenam Noy, 1,501 km ²						
Main Lakes: None.	Main Reserrvoir: None					
Mean Annual Precipitation: 2,149 mm (1988-2000)	Mean annual Runoff: 512 m ³ /s at Attapu (1988-2000)					
Population: 87,700 (Census 1996)	Main Cities: ATTAPU, Muang Sekone					
Land use: Forest 61%, Agriculture 20%	Others 10%; Water resources 9% (1996)					

1. General Description

In Lao, Se or Nam means River, while Kong is a drum played in a pagoda or Wat. The origin of the name Sekong comes from the Jadis, the people who live in the remote source area of the river. Legend has it that the Jadis had to leave their village to go to Attapu. Whilst crossing the river they lost the big drum of the pagoda into the river, probably in a flash flood. Since that time the river has been named "Sekong".

The source of the river is near the Lao-Vietnam border at an elevation of 1,800 m. The length of the main stream to Attapu is about 170 km. The highest point in the basin, near Ban Tang, is 2,066 m, whilst the lowest point, 106 m, is at Attapu. The total catchment at Attapu is 10,500 km² just above where the Sekamane River (catchment area of 4,454 km² at Ban Fang Deng about 15 km east of Attapu town) joins the Sekong. The Sekamane River joins the Sekong downstream of the Muang Mai gauging station and can cause a backwater effect on the Sekong during floods.

The basin is composed of 42.1% sandstone and conglomerate, 29.4% gneiss, schist, quartzite, granite, and gable, 13.9% basalt, 8.8% shale and only 3.3% sandy alluvium. The climate is tropical humid and despite the basin having a high forest coverage (54-67%), there have been important trends in the variation of rainfall. For example, at Attapu the averages over groups of years have varied between 2,534 mm/y (1900-1910), 2,203 mm/y (1913-1921), 2,814 mm/y (1929-1941), and 2,149 mm/y (1988-2000). At Sekong only 1,493 mm/y fell from 1988 to 2000. It is generally considered that deforestation by nomadic people in the basin has had a direct effect on the natural environment causing an increase of the surface runoff and water velocity so that the natural flood mitigation of the forest has been reduced. In recent years natural disasters resulting from climatic abnormalities have caused more frequent floods and droughts, with the 1996 flood being the most severe at Attapu.

2. Geographical Information

2.1 Geological Map

-			and the second division of the second divisio	NAME AND ADDRESS OF TAXABLE PARTY.	-				The local division of	
QUA	ATERNARY		Xb	Unconsolidated gravels, sand, silts, and clays mostly of fluvial origin with some basefic lays flows (v), set and		Cathooderous	1		Mostly shallow sea sequence of muddy limestone (c). Some continental Carboniferous in	
	Neogene		N-0	icess. Lateritised intra-sequence erosion surfaces are present intermontane basin sequence of		Devonian	з	192	Vientane basin, Salavan (S Central) and Phongsali Devonian(N).	
TIMEY		2		treah water sendatones, shales and maris with rare limestone and Spole bods and some besettic lave flow (v)			z		Mostly marine volcanosedmentary	
THE	Palacopene	E	vPg	Alkali basali lava flows (v) (basanitoid types) with associated eruptive vents.	VEO2D		1	Pa	wackes.arenites, silicic and intermediate volcanic rocks	
_		-	- 21	Months and configurated associations	3		2		and the second states of	
	Cretaceous	1		and clays, with lagoonal mudrocks in the upper levels bearing evaporte units of halite and gypram.		Silurian	1		Deep water	
		MA	May		1 1		3		voicanosedimenatary	
		1				Ordovician	2		low or low-medium grades in the E. Mudrocks, warkes, sericite schietsand arenites, arrephibolite, black linestone,	
	Arassic	12	-	Mostly continental sequence with			1	100		
8		1		local water marine facies persisting			3			
205		3	1	Inon opper Paramotoric. Consideration red diagray arentities with concasional this coal searce and conglomerates. Middle Triassic marine imeetone units occur at the base of this interval interbedded with clays in NE and NW Marine Lisesic in SE. Shafew shell see sequence characteristic with a		Cambrien	2	1	mafic intermediate and allicic volcaria rocks	
Ж	Trigonic	2							Scattered outcrop areas of low to high grade metamorphic rocks close to the NE and SE borders with Vietnam. Borg bis (NE) – Low-grade mice-schiste, quarts chiorite- sericite schists and arenties, and mathies: This sequence may continue upwards into the Lower Palaescole. Ultramatic rocks (u) occar in	
		1	Pas			Proterazoia				
	Permian	2		volcanosedimentary sequence. Mostly sandstone, sitistone, and shale in the N and NW.	NATRAN					
Dic l	1040-000	1	-	Borne silicie, intermediate and mafic extrusive rocks (v) associated with subsolvaria intrusive centres.	RECAN			PR		
PAUAE02	Carbonherous	2	eP2.	Bedded to manalive dark grey to light grey marine limestone (c) form extensive loans tracts in N end E, and in the E are intercalated with siltsfore, mudiations and some coal search. Episatetic rocks predominate over limestone in the W and S.	æ				narrow bells. Kontum Maself (SE) – Medium to high grade metamosphic nocks: granibol greise, mice schiet (with garnet, cordiente kyanite or elitinente), amphbolite and marbie.	

2.2 Land Use Map

2.3 Characteristics of the River and the Main Tributaries.

No.	Name of river	Length [km] Catchment area [km ²]	Highest peak [m] Lowest point [m]	Cities Population (year)	Land use [%]
1	Sekong	170 10,500	2,066 106	Sekong (Lamam) 20,000	F (54) A (10) U (2) O (31)
2				Attapu 50,000	F (66) A(15) U(5) O(141)

F: Forest; L: Lake, river, marsh; P: Paddy field; U: Urban O: Orchard; A: Agricultural field (vegetable field, grass field)

2.4 Longitudinal Profiles

3. Climatological Information

3.1 Annual Isohyetal Map and Observation Stations

3.2 List of Meteorological Observation Stations

Number	Station	Elevation [m]	Location	Observation period	Mean annual Precipitation [mm]	Mean annual evaporation [mm]	Observation Items*
1	Sekong Town	144	N 15° 26' E 106° 44'	1989 - 2000	1,493	1,506	P, E, T, WV
2	Thateng	800	N 15° 28' E 106° 22'	1929 - 1998	2,192	-	Р
3	Attapu	106	N 14° 48' E 106° 50'	1988 - 2000	2,149	Pich + 1.5 1,469	P, E, DS, T, WV

* P: Precipitation E: Evaporation DS: Duration of sunshine WV: Wind velocity T: Temperature

3.3 Monthly Climate Data

Station: Sekong (Lamam)

Observation station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Period for mean
Temperature [°C]	24.2	26.2	28.3	288	28.5	28.1	27.2	27.3	27.3	26.8	25.6	24.0	26.9	1995 - 2000
Precipitation [mm]	2.7	16.0	43.7	80.5	151.9	207.4	289.0	286.1	281.1	107.0	24.2	3.3	1,493	1989 - 2000
Evaporation PET [mm]	128	140	173	149	144	127	158	100	93	93	89	111	1,506	1995 - 2000

Station: Attapu

Observation station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Period for mean
Temperature [°C]	25.2	27.0	29.4	30.3	29.3	28.7	27.3	27.3	27.4	27.1	26.4	25.3	27.5	1989 - 2000
Precipitation [mm]	6.2	24.0	43.9	97.6	211.0	306.9	438.4	440.1	417.9	144.6	25.7	5.9	248.9	1988 - 2000
Evaporation PET [mm]	105	116	132	98	80	53	48	46	41	57	84	120	980	1989 - 2000
Sunshine [hours]	277	256	263	213	184	167	149	156	128	189	89	242	2,442	1989 - 2000

3.4 Long-term Variation of Monthly Precipitation

4. Hydrological Information

4.1 Map of Streamflow Observation Stations

No.	Station	Location	Elevation [m]	Catchment area (A) [km ²]	Observation period	Observation items ^a (frequency)
1	Lamam (Sekong)	N 15° 26' E 106° 50'	135	-	1990 - 2000	H2 daily
2	M. Mai (Attapu)	N 14° 48' E 102° 40'	106	10,500	1988 - 2000	H2, Q daily
3	Sekamane (B. Fangden)	N 14° 48' E 106° 55'	106	4,454	1991 - 1999	H2, Q daily

4.2 List of Hydrological Observation Stations

No.	Q ^b [m ³ /s]	Qmax ^c [m ³ /s]	Qmax ^d [m ³ /s]	Qmin ^e [m ³ /s]	Q/A [m ³ /s/100km ²]	Qmax ^c /A [m ³ /s/100km ²]	period of statistics
2	512.1	13,878	5,852	118.7	4.88	132.2	1988 - 2000
3	324.1	5,235	3,076	81.4	7.28	117.5	1991 - 2000

a H2: manual water level, Q: discharge b mean annual discharge c maximum discharge d mean annual maximum discharge e mean annual minimum discharge

4.3 Long-term Variation of Monthly Discharge

4.4 Annual Pattern of Discharge

Annual Maximum and Minimum Discharges 4.6

Veen	М	aximum	Mi	inimum	
1 ear	Date ^a	Discharge ^b [m ³ /s]	Month	Discharge ^c [m ³ /s]	
1987	8.23	5,700	X	X	
1988	10.17	4,640	5	157.8	
1989	7.24	4,750	4	40.0	
1990	9.20	5,710	4	36.7	
1991	8.17	5,040	4	44.0	
1992	8.28	2,320	4	165.0	
1993	9.9	3,390	4	87.8	
1994	9.7	7,848	3	125.0	
1995	7.31	2,798	4	126.6	
1996	9.20	13,878	4	138.0	
1997	9.26	7,163	4	151.2	
1998	11.21	4,108	5	120.1	
1999	8.4	5,678	4	141.5	
2000	8.24	8,905	4	209.0	
S	um =	81,928		1,542.7	
М	ean =	5,852		118.7	

a) Nam Sekong at Attapu (M. Mai), Catchment area = 10,500 km²

b) Nam Sekhamane at Attapu (B. Fengdeng), Catchment area = 4,454 km²

N. C.	M	aximum	Mi	nimum
Year	Date ^a	Discharge ^b [m ³ /s]	Month	Discharge ^b [m ³ /s]
1991	8.19	3,365	4	70.6
1992	10.25	1,500	5	77.8
1993	9.7	2,438	5	70.6
1994	9.6	4,135	3	79.7
1995	7.31	1,356	3	83.4
1996	9.19	5,235	3	89.2
1997	9.26	3,767	4	103.1
1998	11.21	2,959	3	70.6
1999	8.3	2,933	3	87.2
S	um =	27,688		732.2
М	ean =	3,076		81.4

^a date in form month. day^b 2 readings per day

c daily reading

4.7 Hyetographs and Hydrographs of Major Floods

5. Water Resources

5.1 General Description

In the Sekong basin there are several promising projects for different sized hydropower developments. As hydropower has a prominent place in the national policy, the government of the Lao PDR has recognized the strategic value of the hydropower sector and its competitive advantage over other indigenous energy sources in the region. According to the study conducted by the Mekong Committee, there are 5 sites in the Sekong, and 4 sites in Sekhamane and Xenamnoy with a potential total installed capacity of 3,130 MW and annual energy production of about 15,613 GW/h. A study of the Xenamnoy, and Houay KaTakTok by JICA identified sites with a potential installed capacity of 354 MW and annual energy production of 1,042.4 GW/h.

In the 290 km² Xe Katam basin (a river that flows in a south-easterly direction from an elevation of 300 m - see map), accurate hydro-meteorological data were collected and used in a Tank Model simulation. Ten years of data were collected (1980-1990) for this study. A Memorandum of Understanding has been signed for a scheme with a potential capacity of 100 MW (Source: Hydropower, Office of the Ministry of Industry and Handicrafts).

5.2 Map of Water Resource Systems

Date	Date Peak discharge [m ³ /s]		Meteorological Cause	Damages at Attapu
1996 9.16 - 9.21	13,687	920.5 mm over 6 days	Typhoon	5 deaths Rice fields flooded
2000 8.22 - 8.24	8,905	162.8 mm over 3 days	Typhoon	Rice fields flooded

5.4 Major Floods and Droughts

Remark: An historic flood caused by a typhoon flash flood at Attapu M. Mai was reported in September 1930 and caused damage to properties and crops.

Droughts mostly occur during ENSO events and cause severe damage to rice production.

6. Socio-cultural Characteristics

Most people of the Sekong basin live by subsistence agriculture, with a small amount of cash crop production. Pools on the margins of river and in seasonal wetlands are used for agriculture, buffalo grazing and for mammal and waterbird hunting. This is likely to have serious impacts on the small but very important populations of Giant Ibis, White-shouldered Ibis, Lesser Adjutant and Woolly-necked storks that feed in these habitats. In the upper Xenamnoy tributary of the Sekong there are freshwater marshes, lakes, and ponds with about 6 km² covered by wetland. The largest is the Nonglom, which appears to be the result of damming of the valley, possibly by a basalt flow. There is a local legend that a village formerly stood in what is now the middle of the Nonglom. One night springs are reported to have broken through under the village and flooded it and the valley, giving rise to the Nonglom. Villagers from far and near come to fish for Pakoh (channa striata), Padouk (clarias sp), Pakeng (anabas testiduneus), shrimp and occasionally tortoises. Fishing equipment is mainly gill nests, cast nets, and set lines. Hand-baskets are used in shallow waters. The Xenamnoy wetlands are under study. Outside of the Sekong there is a small wetland of l km² in the upper Sekhamane and a larger one of about 350 km², southwest of Attapu and forming the border between the Lao PDR and Cambodia.

7. References, Databooks and Bibliography

National Geographic Department 1:1.000.000 Scale map, 1986.

- Department of Geology and Mines: 1:1.000.000 Scale map of the Geological and Mineral Occurrence in Lao P.D.R. 1991.
- MRC Hydrologic year books available until 1995 and Forest cover map of Lao P.D.R. 1996/97. WAD, Hydrological data of Nam Ou and Nam Suang 1990-98.
- JICA, December 1991, Feasibility study on Xe Katam small-scale hydroelectric Power development project.

IUCN (1996): The world conservation union. Inventory of wetlands in Lao P.D.R.

Lao P.D.R. Country Report on Water Resource Management at 8th SE Asia and Pacific Regional Steering Committee meeting for UNESCO's International Hydrological Programme, Christchurch, New Zealand, 20-24 November 2000.