1. The temperature T, the horizontal wind velocity u, the vapor pressure e and the atmospheric pressure p were measured at the same altitude z. The water surface temperature T_s was also measured. Derive equations to calculate the water vapor flux and the sensible heat flux from the water surface, using the following equations

$$E = -\frac{K_{\rm E}}{K_{\rm M}} \frac{k^2 \rho (q_4 - q_3)(u_2 - u_1)}{\ln(z_2/z_1) \ln(z_4/z_3)} \tag{1}$$

and

$$H = -\frac{K_{\rm H}}{K_{\rm M}} \frac{k^2 \rho C_{\rm p} (T_4 - T_3) (u_2 - u_1)}{\ln(z_2/z_1) \ln(z_4/z_3)}$$
(2)

for estimating the water vapor flux and the sensible heat flux. Note that the height above the water surface where the wind velocity is 0 is z_0 , that the height where the specific humidity equals the saturated specific humidity $q_s(T_s)$ on the water surface is z_{0E} , and that the height where the temperature equals of the water surface temperature T_s is z_{0H} .

2. At 2m, temperature was 25°C, relative humidity was 40 %, atmospheric pressure was 1013 hPa, wind velocity was $3 \text{ m} \cdot \text{s}^{-1}$ and temperature on the water surface was 25°C . $z_0 = z_{0\text{E}} = z_{0\text{H}} = 0.03$ cm is supposed, and k = 0.4, at temperature of 25°C the air density $\rho = 1.19 \text{ kg} \cdot \text{m}^{-3}$. Under the assumption of neutral atmospheric condition, caluculate water vapor flux with unit of kg·m⁻²s⁻¹. Suppose that at temperature of 25°C the water density is 997 kg·m⁻³, caluculate water vapor flux with unit of mm·day⁻¹.

Answer:

Substituting $q_4 = q$, $z_4 = z$, $q_3 = q_s(T_s)$, $z_3 = z_{0E}$, $u_2 = u$, $z_2 = z$, $u_1 = 0$, $z_1 = z_0$ into Eq. (1) and using $q \simeq 0.622e/p$,

$$E = -\frac{K_{\rm E}}{K_{\rm M}} \frac{0.622k^2\rho(e - e_{\rm s}(T_{\rm s}))u}{p\ln(z/z_0)\ln(z/z_{0\rm E})}$$
(3)

Substituting $T_4 = T$, $z_4 = z$, $T_3 = T_s$, $z_3 = z_{0H}$, $u_2 = u$, $z_2 = z$, $u_1 = 0$, $z_1 = z_0$ into Eq. (2),

$$H = -\frac{K_{\rm H}}{K_{\rm M}} \frac{k^2 \rho C_{\rm p} (T - T_{\rm s}) u}{\ln(z/z_0) \ln(z/z_{\rm 0H})}$$

At temperature of 25°C the saturation vapor pressure $e_s = 6.1078 \times 10^{7.5 \times 25/(237.3+25)} =$ 31.675 hPa. Substituting observed values into Eq. (3),

$$E = -\frac{0.622k^2\rho(e - e_s(T_s))u}{p\ln(z/z_{0E})}$$

= $-\frac{0.622 \times 0.4^2 \times 1.19 \times (31.675 \times 0.4 - 31.675) \times 3}{1013 \times \ln(2/0.0003) \times \ln(2/0.0003)} \text{ kg} \cdot \text{m}^{-2}\text{s}^{-1}$
= $8.598 \times 10^{-5} \text{ kg} \cdot \text{m}^{-2}\text{s}^{-1}$
= $8.598 \times 10^{-5} \times 997 \times 1000 \times 87600 \text{ mm} \cdot \text{day}^{-1}$
 $\approx 7.45 \text{ mm} \cdot \text{day}^{-1}$

Hints:

- Suppose in equations (1) and (2), $u_1 = 0$ at $z_1 = z_0$ and T, u and e were measured at $z_4 = z_2 = z$.
- Suppose that q_3 is $q_s(T_s)$ at $z_3 = z_{0E}$ in eq (1) and that T_3 is T_s at $z_3 = z_{0H}$ in eq (2).
- The specific humidity *q* can be approximated using the vapor pressure *e* and atmospheric pressure *p* as $q \approx 0.622e/p$.
- In neutral atmospheric condition, $K_{\rm M} = K_{\rm E} = K_{\rm H}$.
- $e_s(T)$ which is the saturated vapor pressure over the temperature *T* is useful. This can be expressed as $e_s(T) = 6.1078 \times 10^{aT/(b+T)}$, Here, a = 7.5, b = 237.3, unit of e_s is hPa and unit of *T* is °C. As a result, the vapor pressure *e* can be derived by multiplying the saturated vapor pressure and relative humidity.