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Abstract 

This paper describes a methodology for embedding a Kalman filter into a distributed hydrological 
prediction system for real-time flood prediction. In most cases it is complicated to formulate a Kalman 
filter algorithm in the system structures of distributed models. However, the Kalman filter theory is 
successfully coupled with a distributed hydrological model to update spatially distributed state 
variables by using several techniques proposed here. To acquire the total water storages of a basin 
from discharge observations at the outlet, a Q-S curve is used as an observation equation. The ratio 
method is introduced to update the distributed storage amount of a basin, maintaining the spatially 
distributed water storage pattern of the basin by multiplying the distributed state variables in the model 
by a specified ratio. A Monte Carlo simulation is adopted to predict state variables and error 
covariance propagations. The methodology for deciding system noise is also discussed. A distributed 
model coupled with the Kalman filter theory gives updated simulation results with improved forecasting 
accuracy.  

1. INTRODUCTION 

To obtain an accurate prediction in a real-time rainfall-runoff simulation it is essential to set model 
parameters effectively and to give properly assessed initial state variables. Modern real-time 
observation systems make it possible to access various hydrological data while real-time simulation is 
carried out. Prediction accuracy should be improved when the parameters or state variables are 
updated with real time observed data. Also, the uncertainty caused by improper model parameters, 
initial state variables and input data can be reduced if filtering theory, such as the Kalman filter, is 
incorporated in a hydrological model. 
 
R.E. Kalman (1960) published his famous paper describing a recursive solution, which was later 
named as the Kalman filter, to discrete data linear filtering problems. Having potential for broader use, 
Kalman filter has been enhanced as Extended Kalman filter for nonlinear systems. The Kalman filter is 
an optimal recursive data processing algorithm to estimate the state variables for minimizing the error 
statistically. It combines all available observation data, plus prior knowledge about the system and 
measuring devices, to produce an estimate of the desired variables in such a manner that the error is 
minimized statistically (Maybeck, 1979). A more detailed description about Kalman filter theory can be 
found at Jazwinski (1970) and a good discussion of the filter with several application cases to the 
hydrological system is given by Bras and Rodriguez-Itulbe (1985). 

 
Since Hino (1974) initially adapted the Kalman filter theory to a hydrological system, numerous studies 
have been carried out to use the filter theory in the field of hydrology. Takaso et al. (1989) describes 
real-time flood forecasting based on a stochastic state-space formulation of rainfall-runoff systems 
coupled with the Kalman filtering-prediction theory and its application. In the research, the storage 
function method was used to couple with the filter taking the storage amounts of sub-basins as the 
state vector. Lee and Singh (1999) showed upgraded simulation results of the tank model when the 
state vector of the Kalman filter is composed of the model’s parameters. The storage function method 
and the tank model are often used lumped models in Japan, Korea and many other countries for flood 
forecasting and watershed modeling. While the Kalman filter has been applied to many lumped 
models for better simulation or more accurate forecasting, it has hardly ever been applied to 
distributed hydrological models. One of the main reasons is that unlike lumped models, in most cases 
it is complicated to formulate the Kalman filter algorithm in the system structures of distributed models. 



  

 

A large number of state variables based on a fine grid cell hydrologic system also makes it harder to 
apply the Kalman filter. 
 
In this research, to avoid the computational burden for updating each state variable, several 
techniques are introduced for applying the Kalman filter to a distributed hydrological model. The Q-S 
curve which is determined under steady state assumption on a study basin is used for the observation 
equation to update the simulated total storage amount of the basin with discharge observations. To 
consider the spatial pattern of the updated storage amount in every grid-cell of a distributed 
hydrological system, the ratio method is adopted. The ratio method is used for updating spatially 
distributed storage amount in the model by multiplying by a ratio calculated from the updated total 
storage amount and the simulated storage amount. For the prediction algorithm, stochastic analysis is 
adopted to predict state variables and error covariance of the next updating step. Monte Carlo 
simulation is an effective technique to analyze the effect of error covariance propagation. The 
methodology for deciding system error variance is also discussed.   

2. COUPLING OF CDRMV3 WITH KALMAN FILTER 

The study mainly focuses on a coupling method of the Kalman filter to the Cell based Distributed Runoff 
Model Version 3 (CDRMV3, http://fmd.dpri.kyoto-u.ac.jp/~flood/product/cellModel/cellModel.html). 
The state variable to be updated is the total storage amount and its spatial distribution is calculated 
using water depth at all computational nodes in the model. The water depths are easily converted to 
storage amount by multiplying the cell area. The parameters of the CDRMV3 are calibrated before 
applying the Kalman filter and do not change when state variables are updated. Uncertainties caused 
by systems and observations are considered in the error covariance of the filter, though uncertainty 
caused by rainfall forecasting is not accounted for in this study. Radar observed rainfall data which is 
calibrated by ground gauges are used as forecast rainfall data.  

2.1 Brief Model Description of CDRMV3 

CDRMV3 is a one dimensional physically based distributed hydrologic model developed at Flood 
Disaster Research Laboratory of Disaster Prevention Research Institute, Kyoto University. The model 
solves the Kinematic wave equation using Lax Wendroff scheme on every node in a cell (Kojima et al., 
2003). Discharge and water depth propagate to the next cell according to a predefined routine order 
determined in accordance with DEM data. An advantage of the CDRMV3 is that the stage-discharge 
relationship of each cell reflects the topographic and physical characteristics of its own cell. Specified 
stage-discharge relationship, which incorporates saturated-unsaturated flow mechanism, is included in 
each cell (Tachikawa et al., 2004). Because of the variable slope and roughness coefficient, each cell 
has its own relationship: 
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   where ikv CC = , ikv aa = , ni /=α . 
    kc : hydraulic conductivity of unsaturated layer 
    ka : hydraulic conductivity of saturated layer 
    n : roughness coefficient 
    i : slope of grid 
 
The stage-discharge relationship is expressed by three equations corresponding to the water levels 
divided into three layers (see Equation 1). When the water depth h is lower than the depth of 
unsaturated layer (0≤ h<dc), flow is described by Darcy’s law with a degree of saturation, (h/dc)β, and a 
hydraulic conductivity kc. If the h increases, flow from the saturated layer is considered with a different 
hydraulic conductivity ka of saturated layer. After the water depth is greater than the soil layer ds, 
overland flow is added by using the Manning’s equation.  According to this mechanism, the equations 



  

 

between discharge per unit width q and water depth h are formulated. Figure 1 shows the graphical 
relationship between q and h. More detail on the specified state-discharge relationship and the model 
structure can be found in Tachikawa et al. (2004). 
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Figure 1. Relationship between unit width discharge and water depth in the CDRMV3 

 
The model is applied to the Kamishiiba basin (211km2) of Kyushu area. Four different flood types of 
the basin are selected for this study. Flood period and maximum discharge of the four events are 
shown in Table 1.  
 

Table 1.  Flood events used in the study 
 

EVENT Flood Term Max Discharge 
Event 979 Sep 15~19, 1997 1203.0 m3/s 
Event 996 Jun 24~Jul 3, 1999   210.0 m3/s 
Event 998 Aug 1~7, 1999   489.0 m3/s 
Event 999 Sep 22~27, 1999   644.0 m3/s 

2.2 Measurement Update Algorithm 

In the measurement update algorithm of the Kalman filter, an observation equation which specifies a 
relation between observed data and state values is necessary. The observation vector yk can be 
described as a linear combination of a state vector xk as Equation 2. The observations are affected by 
white noise wk which has a covariance matrix Rk. The m×n matrix H relates the state vector to the 
observation. In the measurement update algorithm, the state vector x(klk-1) and error covariance 
P(klk-1) which are estimated through system at time step k-1, are updated at time step k with use of 
the n×m matrix K. The matrix K which is called Kalman gain is chosen to minimize the updated error 
covariance P(klk). In the algorithm, ^ indicates estimated value and T indicates the transpose of a 
matrix. 
 
Observation equation 

kkkk wxHy += ;   ),0(~ kk RNw  (2) 
 
Measurement update algorithm 
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The difference, yk-Hkx(k│k-1), which is called the residual or innovation reflects the discrepancy 
between the estimated observation Hkx(k│k-1) and the actual observation yk. If the total storage 
amount to be updated is measured directly, the residuals are easily obtained. However observed 
quantities are discharge or river stage rather than distributed storage amount. When we think of the 
storage amount as a state variable, we can easily come up with a nonlinear relationship between 
discharge and total water storage in a subject basin as shown in Equation 6. In the storage function 



  

 

method, when it is coupled with the Kalman filter, the observation equation is adopted after 
linearization of Equation 6. 

PtKQtS )()( =  (6) 
 
   where S(t) : total water storage in a basin 
    Q(t) : discharge at the outlet 
    K, P : constants. 
 
Unlike the storage function method the CDRMV3 does not have general relation between observed 
discharge and the storage amount. The relationship between the discharge at the outlet and the total 
amount of storage represents a loop shape as shown in Figure 2, whose shapes are different for each 
flood event. However, it is still possible to get a relation in a specific case like a steady state condition. 
After reaching the steady state condition with a given constant rainfall on the subject basin, the total 
storage amount that corresponds to the given rainfall intensity can be acquired by multiplying cell area 
with water depths of every cell and sum up these entire amounts. The cell size in this study is 
250m×250m. Applying various rainfall intensities, the Q-S curve that is used for the observation 
equation is obtained as shown in Figure 2. Even though states during a runoff simulation are not 
steady, the difference between the two curves from the steady state and unsteady state seems 
acceptable.  
 
The reason for needing the observation equation is to get the matrix H in the measurement update 
algorithm. The conversion matrix H relates total storage amount and observed discharge at time step k. 
More specifically, it stands for the gradient of the Q-S curve in accordance with simulation results at 
updating time step. As only one observation is available in the Kamishiiba basin, H is a scalar value in 
this study. 

 

    
Figure 2. Two different curves between steady and unsteady state 

 
In processing the measurement update algorithm, a couple of problems exist to be considered. These 
are basically caused by the steady state assumption when making use of the Q-S curve. Because the 
relationship is determined under the steady state assumption, there is always some departure towards 
the unsteady state, even if it is small.  
 
At first, two different H values could be given at each time step as seen in the Figure 2. At each time 
step, discharge and total storage amount are obtained from simulation results. Those two values from 
unsteady state simulation may not match on the Q-S curve. This mismatch often gives two different H; 
one is from the simulated discharge and the other is from the simulated storage amount. However, 
through several tests, it is checked that those two different H values do not make a recognizable 
difference to the filtered results. For this reason, an arithmetic average of those two H values is used 
in the application of the CDRMV3.  
 
Another problem occurs while getting residuals in the measurement update algorithm. According to the 
conventional equations of the Kalman filter, the residuals are calculated by the use of the observation 
equation. As shown in Equation 7, converting state variables needs the H value which contains the 
steady state error described already. On the other hand, residuals can be directly calculated from the 
difference between observed discharge and simulated discharge as in Equation 8. Filtered results 

two different Hs
(steady state)

runoff simulation
(unsteady state)

Q-S curve
Event 979



  

 

from those two residuals show significant difference. In conclusion, the residuals from directly using 
simulated discharge gives much better filtered results. More detail discussion is provided in Section 3.  

)())1(ˆ( kkkkkk ASSHOQkkxHy +×−⇒−−  (7) 

)())1(ˆ( kkkk SQOQkkxHy −⇒−−  (8) 
 
   where OQk : observed discharge 
    SQk : simulated result of discharge 
    SSk : simulated result of total storage amount 
    Hk: conversion matrix, gradient of the Q-S curve 
    Ak: optional input for the linearization 
 
After updating the total storage amount through the measurement update algorithm, the updated 
storage amount should be distributed to each cell in a subject basin. One efficient way to update each 
cell’s storage amount is using a specific ratio calculated from the updated total storage amount and 
the simulated storage amount. The calculated ratio is applied to all water depths of each cell in the 
model, which has the same spatial distribution pattern with the simulation result before updating as 
shown in Figure 3. For example, if the simulated storage amount at a specific time step is 1.03476E+8 
m3 and the updated value is 0.97292E+8 m3, all water depths of each cell at this time are multiplied by 
the ration 0.9402, and then the simulation starts again using each cell’s updated state variable. This 
method which is named as the ratio method, offers efficient and effective updating skill of state 
variables considering its spatial distribution pattern (Kim et al., 2004).  

  
Figure 3. Concept of the ratio method for updating spatially distributed state variables 

2.3 Time Update Algorithm 

The Kalman filter is an algorithm to optimize the state vector x of a discrete time controlled process 
which is governed by a linear difference equation. The n×n matrix F in the system equation relates the 
state at previous time step k to the state at current step k+1. The systems are continuously affected by 
white noise, vk, with covariance matrix Qk respectively. The matrix Bk relates optional control input to 
the state x. The time update algorithm is for projecting forward the current state and error covariance 
to obtain the estimation for the next time step. The estimated error covariance P is a n×n matrix.    
 
System equation 

kkkkk vBxFx ++=+1 ;  ),0(~ kk QNv  (9) 
 
Time update algorithm 
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In the CDRMV3, a complicated relation exists between the present state variables and the next state 
variables; in this case the storage amount and its spatial distribution. Each cell responds 
interdependently to the next step’s state variable according to its present state variable and other input 
data such as rainfall. So it is impractical to formulate the system matrix Fk, which is essential to update 
the error covariance P(k+1│k), even though it is possible theoretically. Rather than use the conventional 
concept of the Kalman filter theory as shown in the schematic drawing (a) in Figure 4, the Monte Carlo 
simulation technique (drawing (b) in Figure 4) is useful to solve this kind of problem.  
 

State variables       Updated storage amount 
  of every cell             Simulated result one 



  

 

By the concept of the Monte Carlo simulation, many sets of random variables are generated at time 
step k; hundreds of storage values were generated in this study. Each random variable is defined by 
any possible storage amount within a range of probability distribution, N(Xk, σk); where, σk=Pk

0.5.  

         

       
Figure 4. Concepts of time update algorithm  

 
The ratio method is used again at this point to reset the water stage at each cell by multiplying by the 
ratio of generated storage amount to the mean storage amount Xk. After a simulation repeatedly 
calculates multiple input sets until the next update time step k+1, another probability distribution, 
N(Xk+1,σk+1), is calculated from the simulated results. Now, the estimated state Xk+1 is the mean value 
of the probability distribution and the estimation error covariance FkPkFk

T is regarded as (σk+1)2. Adding 
the system error covariance Qk completes the error covariance Pk+1 at time step k+1. Estimation error 
covariance FkPkFk

T means propagation of the error covariance Pk through the simulation, and Qk 
stands for a new generated or added system covariance during simulation from time step k to the next 
time step k+1. The newly added system covariance is caused by system structure or new input data 
such as rainfall. The methodology to determine the system error covariance, Qk, is discussed in the 
following section.  

 
Figure 5. Propagations of probability density of storage amount and discharge (Event 979) 

 
Figure 5 shows an example of the probability distribution propagation during three hours from Monte 
Carlo simulation results. The three lines on the bottom represent the variation of mean value and 
standard deviation from the distribution at each calculation time step. While the distributions of storage 
amount follow the normal distribution pattern, the distributions of discharge which are composed by 
each simulation results set from the storage amount variables do not always stick to the normal 
distribution. This phenomenon is caused by the nonlinear relationship between storage and discharge. 
The different distribution pattern of discharge and storage amount will also affect the form of the error.  

2.4 Setting the Observation Noise and System Noise 

One of the difficulties in applying the Kalman filter is determining the error covariance of the system 
and the observation. Although the Kalman filter provides an algorithm for better forecasting by 
updating the state estimates, its success depends on determination of the error covariance which 

kk QkkP +=+ +
2

1)()1( σ  

 T
kkk FkkPF )()( 2

1 ≈+σ  

 )()( 2 kkPk =σ  

  Hydrologic 
 SYSTEM 

Xk, kσ  Xk+1, 1+kσ
 (b) Estimation using Monte Carlo simulation

  Hydrologic 
 SYSTEM 

kQ

)(ˆ kkx  

)( kkP
kk BkkxF +)(ˆ  

k
T

kk QFkkPF +)(
(a) Estimation using Kalman filter



  

 

requires proper judgment by the hydrologist. Because the hydrological system is a natural system 
which varies in time and space, it is impossible to get the true value. This means that it is also 
impossible to get the error covariance which is based on noises to the true value of hydrological 
variables. For this reason, error covariance has been assumed when the Kalman filter is applied to 
hydrological models. The only action we can take is to try to get a reasonable error covariance with the 
least assumptions. 

2.4.1 Observation Noise 

The basic assumption of the Kalman filter is that system and observation noises are white and 
Gaussian. Thus, at any point in time, the noise value is not correlated in time and the probability 
density curve of noise takes on the shape of a normal bell-shape. This assumption can be justified 
physically by the fact that a system or observation noise is typically caused by a number of small 
sources (Maybeck, 1979). It is reasonable to see the observation noise from this point of view. Usually 
observed values are acquired through a conversion from stage to discharge by using a stage-
discharge relation or rating curve. Observation noises are mainly caused by misreading of gauge 
stage, interpolation during conversion from stage to discharge, and improper stage-discharge 
relationship. Also it is not difficult to accept that the noise is normally distributed to the true value. The 
observed data used in this study are acquired from the Kamishiiba dam inflow data. The inflow data 
are calculated mainly by converting the dam reservoir stage into discharge with considering the 
release from the dam for various purposes. Since more research is needed to determine the 
observation noise reasonably, an assumed observation error variance is used in this paper. The 
assumed error variance is mentioned in each filtered result.  

2.4.2 System Noise 

If observed data are assumed to be true values, differences between simulation results and the 
observed data could be regarded as system noise. First, it needs to be examined whether the 
variances of simulation results to the observed data have a normal distribution. When the offline 
simulation results from the CDRMV3 are examined, the variances have a normal probability 
distribution to the observed data as sown in the Figure 6. Under this examination, the RMSE given by 
Equation 12 could be regarded as a standard deviation of system noise wk. The mean value and 
RMSE from the offline simulation results of four different events are shown at Table 2. We can figure 
out that the mean values of variances are around zero and the RMSEs are around 30m3/s. Following 
this analysis, the standard deviation of system noise in terms of discharge is set as 30m3/s in this 
study. 
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Figure 6. Variances of system error and its probability distribution (Event 998) 

(a)  Offline simulation results and observed data 

(b)  Variances of simulation results to the observed data
    Frequency 

(c)  Probability distribution of the variances 
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   where RMSE : Root Mean Square Error 
    QS : simulated discharge 
    QO : observed discharge 
    n : number of QS or QO values 
 

Table 2.  The RMSE and mean values of each event 
 

EVENT RMSE MEAN 
Event 979 33.64 m3/s   -2.22 m3/s 
Event 996 21.15 m3/s -10.80 m3/s 
Event 998 20.85 m3/s    3.32 m3/s 
Event 999 23.73 m3/s   -1.02 m3/s 

 
Then, the discharge RMSE is converted to the error variance of the total storage amount. System 
noise in terms of discharge can be translated to the noise in terms of storage amount by using the Q-S 
curve as seen in the Figure 7. The term ‘sd’ in the figure means the standard deviation of discharge 
variances, which was previously determined to be 30m3/s. Three discharges from simulation results at 
a specific time step will match with three different storage amounts on the Q-S curve. Because of 
nonlinearity of the relation, the differences between the upper value and lower value to the Sk will be 
different. Using those two differences of storage amount, Supk–Sk and Sk-Sdnk, the system error 
variance Qk can be calculated as shown in Equation 13. 

 
)()( kkkkk SdnSSSupQ −×−=  (13) 

 
   where Qk : system error variance at time step k 
    Sup, S, Sdn : converted storage amounts 
 
 

    
Figure 7. Conversion of noise from discharge to storage amount form 

 
There is one important checking point about the Gaussian assumption of the Kalman filter for a 
nonlinear system. Because the relationship between discharge and storage amount is nonlinear, if the 
probability distribution of storage amount is a Gaussian distribution, the distribution of discharge will 
not follow the normal distribution, and vice versa. The distributions of the variables are no longer 
normal after undergoing their respective nonlinear transformations. However, this nonlinear effect on 
probability distribution is not significant in this study. As shown in Figure 5, the probability distribution 
of discharges, which is calculated from the simulation results according to each storage amount 
having normal distribution, can be roughly regarded as a normal distribution. 

SQk+sd 
SQk 
SQk-sd 

Sdnk 
Sk 
Supk 



  

 

3. ANALYSIS OF RESULTS 

3.1 Results from two different residual types 

The Kalman filter, a recursive data processing algorithm, is successfully coupled to the distributed 
hydrological model, CDRMV3. To check the filtering results effectively, the observed data are 
assumed to have no error. If there is no observation error, which means that the observed data is the 
true value, the filtered results and observed data should match exactly. When the results are checked, 
there are discrepancies at the beginning and after the peak of the hydrograph compared to the other 
part as seen in Figure 8.  
 
Three reasons are considered to explain these discrepancies. The first one is because of the steady 
state assumption of the Q-S curve. When the steady state assumption is made, discharge and storage 
is expressed as a single-valued function (see Figure 9 (a)). On the other hand, different storage values 
occurs in unsteady state conditions, even though the discharge is the same as shown in Figure 9 (b). 
The storage amount at the beginning of the hydrograph is different from the amount at the falling limb 
or after the peak of the hydrograph. The differences in storage amount, “Storage B-A” at the beginning 
of the runoff and “Storage C-A” after the peak, cause the under estimation of discharge at the rising 
limb and the over estimation at the falling limb of the hydrograph.  
 
 

 
Figure 8. Updated results comparisons from two different residuals 

 
 

              
 

Figure 9. Conceptual storage amount distributions according to the state differences 

 
Secondly, every observation update is given at every an hour while the calculation time step is ten 
minute. Five simulation results between nearest observation update would make its own hydrograph. 
When observation updates are carried at every calculation time step, the discrepancies are decreased 
a lot. The last reason is that the filtered results presented as the discharge hydrograph are one 
calculation time step ahead prediction results. The updated storage amounts are used to update each 
cells water depth, and then the next step’s discharges are calculated using the updated water depths 
of the previous step. Even thought it is small, it results in some discrepancies in the hydrograph. 
 
Two different updated results are presented in Figure 8; the hydrograph labeled “using equation 7” is 
the result when Equation 7 is used to calculate the residuals in the measurement update algorithm, 
and the other one labeled “using equation 8” is using Equation 8 in the algorithm. Those two kinds of 
results are obtained under the setting that the observation error variance is zero and the standard 
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Discharge Q 

Storage B 

Discharge Q
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Discharge Q

(a) Steady state 

at the beginning of runoff                         at the ending of runoff 

(b) Unsteady state
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deviation of system noise is 30m3/s. Direct use of the simulated discharge to obtain residuals gives 
much better filtered results than using the H value from the Q-S curve. When these two residuals at 
each updating step are compared, around 10 to 30m3/s of difference is observed. In the case of “using 
Equation 8”, the discrepancies to the observed data are not recognizable as much as in the “using 
Equation 7” case. Every result from now on is obtained using Equation 8. 

3.2 Comparison the updated results from different error variance 

Figure 10 shows the various updated results by setting a different error variance. The label “oe30” 
means 30m3/s of standard deviation as an observation noise and “se30” means 30m3/s of standard 
deviation as a system noise, “se0” means no system noise, and “oe0” stands for no observation noise 
which means the observed data are regarded as true values.  
 
When the hydrographs from the case “se0.0:oe30” are examined, the filtered results are exactly the 
same as the results from offline simulation because the system is regarded as a perfect one to do a 
simulation. On the other hand, the case “se30:oe0.0” shows that the filtered results trace the observed 
data. The case “se30:oe30” show that the filtered results are located between the offline simulation 
results and the observed data. Even though the noises are set to the same value as 30m3/s, the 
filtered results are closer to the observed data than offline simulation results. Several reasons are 
considered to explain this phenomenon such as nonlinear observation equation, different form of error 
variance and initial error variance. While the observation error variance is in terms of discharge, the 
system error variance is in terms of storage amount which is transformed from the discharge noise. 
The initial error variance of the Kalman filter also affects the filtered results; the initial error variance is 
set as 20m3/s of discharge noise in this study. Further research is needed to determine how these 
factors affect the filtered results. 
 

    
Figure 10. Updated results from variant error variance 

3.3 Another noise form: Coefficient of Variation 

It is sometimes unreasonable to set the standard deviation of noise as a constant value, no matter 
how much discharge there is. When discharge is comparably small, for example 50 or 100m3/s, 
30m3/s of noise is a large value to set as a standard deviation. On the other hand, if discharge is over 
1000m3/s, that amount of the noise could be negligible. For this reason, it is more reasonable to set 
the noise not as a deterministic value but as a ratio to discharge, such as a form of Coefficient of 
Variation (C.V.) which is calculated as a ratio of standard deviation to mean value. The 30m3/s of 
deterministic system noise can be converted to the C.V. by Equation 14. The converted C.V. value 
from the four flood events gives a 10% value for noise. Every result here after comes from the C.V. 
error form. The results shown in Figure 11 are obtained when both observation noise and system 
noise are set at 10% of observed discharge and simulated discharge. Figure 12 shows the variation of 
the standard deviation of discharge results using two different noise forms. It can be easily recognized 
that the variations from C.V. form show reasonable results in accordance with discharge variations. 

(a) Event 979 (b) Event 996



  

 

 (14) 

   where cv : coefficient of variation 
    yi : simulated discharge 
    xi : observed discharge 
    n : number of discharge values 
 

   
Figure 11 Filtered results when the noises are C.V. form 

   
Figure 12. Standard deviation of discharge 

3.4 Prediction Efficiency 

To check the prediction accuracy after coupling with the Kalman filter, 1hr, 6hr and 12hr prediction 
results are compared. Figure 13 shows the prediction results when the system noise and observation 
noise are equally set as 10% of C.V. Table 3 shows the RMSE from the prediction results. The RMSE 
is calculated by Equation 12. As expected, prediction for short lead times shows higher accuracy. It is 
interesting that even prediction of 12hr ahead gives quite good accuracy compared to the short lead 
time forecasting. One main reason for this is the use of recorded rainfall data. Simulation and 
prediction are carried out under an assumption that we know exactly the expected rainfall. Because 
this paper focuses on coupling the Kalman filter to a distributed hydrological model, it needs to 
decrease the factors which impact on the filtered results. If the uncertainty of the rainfall forecast is 
provided, it should be added in the system error variance Qk.  
 

   
Figure 13. Prediction results when the C.V. is 10%  
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Table 3.  The RMSE of predicted results (unit: m3/s) 

 
EVENT 1 hr predict 6 hr predict 12 hr predict 
Event 979 37.18  39.64 37.28 
Event 996 11.42 17.24 20.14 
Event 998 16.45 21.93 22.17 
Event 999 28.00 34.72 27.85 

4. CONCLUSION 

The Kalman filter was successfully coupled with the distributed hydrological model, CDRMV3, to 
update the state variables. Rather than formulate an impractical algorithm to apply the filter, several 
techniques, such as the Q-S curve, ratio method and Monte Carlo simulation are used. Total storage 
amount from the Q-S curve is used as an observed storage amount. The ratio method is used for 
updating each water stage of every cell in the model by multiplying by the ratio calculated from 
updated total storage amount and the simulated storage amount. For the prediction algorithm, Monte 
Carlo simulation is adopted to predict state variables and error covariance at the next step. Monte 
Carlo simulation is an effective technique to analyze the propagation of error covariance. 
 

The CDRMV3 using Kalman filter yields better results than the CDRMV3 without the filter in terms of 
RMSE and computed hydrographs. Prediction efficiency after coupling with the Kalman filter, for 1hr, 
6hr and 12hr prediction results, shows quite good accuracy when compared with the observed data 
when prediction are carried out under an assumption that the expected rainfall is exactly known. 

 
Research to overcome the steady state assumption on the Q-S curve is needed to improve the filtered 
results. A methodology to include the uncertainty of rainfall forecasting in the system error covariance 
is a further research issue. 
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