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ABSTRACT:  We propose a methodology to identify prediction uncertainty through recognizing and 
quantifying the different uncertainty sources in a hydrologic model.  Statistical second moment is used as a 
measure of uncertainty; also an index which originated from Nash coefficient of efficiency named Model 
Structure Indicating Index (MSII) is proposed to evaluate the model predicting uncertainty.  The results show 
that MSII can well reflect the goodness of model structure, while a larger value of MSII indicating a poorer 
structure of hydrologic model.  The index can be used as a tool for implementing model quantitative 
comparison. 

              
 

1 INTRODUCTION 
 
With rapid advances in computing technology, remote sensing, GIS and DBMS, the role of hydrologic models is 
enhanced as a tool in planning, decision making and tends to incorporating with other process models such like 
economic, social, political, administrative, and judicial models.  Thus, the watershed hydrologic models will 
become a component in a larger management strategy.  Furthermore, these models will become more global, 
not only in the sense of spatial scale but also in the sense of hydrologic details (Singh and Woolhiser, 2002).  
Therefore, a methodology to assess the error, uncertainty and adequacy of adopting hydrologic models in 
specific purpose is needed.  The present study provides a methodology for model comparison and selection 
through model uncertainty recognition and quantification.   

For many years hydrologists have been interested in the effects of various uncertainties on the accuracy and 
reliability of the estimation of catchment hydrological variables such as peak flow and flood volume (Høybye 
and Rosbjerg, 1999).  Among early contributions, some of them focus on the rainfall uncertainty and its 
influence to the runoff (e.g., Storm et al., 1989); some of them focus on the sensitivity of model structure due to 
the input error (e.g., Singh and Woolhiser, 1976).  Recent researches relating to hydrologic model uncertainty 
most refer to parameter uncertainty identification, the procedure of parameter calibration, and their impact to 
simulation result (Freer et al., 1996; Kuczera and Parent, 1998).  Among them, Generalized Likelihood 
Uncertainty Estimation (GLUE) Methodology (Freer et al., 1996) offers a path of identifying parameter 
uncertainty.  Nevertheless, parameter equifinality became the conclusion of GLUE; uncertainty related to input 
data and other factors are excluded.  Even it is said that they could also be included in GLUE but this has not 
normally been done (Beven, 2001). 

The performance of hydrologic models is profoundly affected by the sources of uncertainty, briefly they are: 
observed data, data for model calibration, parameter space, and model structure.  Underestimating or 
misunderstanding of these uncertainty sources and the interrelation among them may cause tremendous 
misleading on interpreting the result of hydrologic models.  However, recognizing and quantifying these 
different sources of uncertainty in hydrologic models has received little attention in the research literature. 

In this study, a methodology is proposed to recognize and quantify the different uncertainty sources.  
Firstly, Monte Carlo simulation method is applied to add bias item in model input data series, then rainfall 
realizations, parameter space, and model outcomes under different bias level are acquired.  Secondly, by 
examining the counter relationship between model simulation outcomes, calibration outcomes and observed 
watershed response series, an uncertainty structure is recognized.  Finally, parameter uncertainty, calibration 
uncertainty, and model structure uncertainty caused by input data uncertainty are recognized, separated, and 
quantified through the methodology.   

Statistical second moment is used as a measure of uncertainty, also an index which originated from Nash 
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coefficient named Model Structure Indicating Index (MSII) is proposed to quantify model structure uncertainty 
which can be used as a tool for implementing model quantitative comparison (selection).  The results show that 
a larger value of MSII indicating a poorer structure of hydrologic model in a dynamic manner, that is, 
incorporating the MSII to the input uncertainty. 

 
2 UNCERTAINTY RECOGNITION IN HYDROLOGICAL MODELING 
 
In this study, prediction uncertainty which came from the four kinds of sources mentioned previously is 
classified into four categories: system uncertainty, entire uncertainty, inherent uncertainty, and structure 
uncertainty.  The definition and the procedure to recognize them are described below. 

 
2.1 System uncertainty 

 
Even it is well known that a hydrologic model is an approximation of the real phenomena based on the 
hydrologic cycle, still it is needed to stress that there always exiting discrepancy between model outcome and 
observed data, no matter how precise the model is and how perfect the model calibrated.  That is the model 
predicting limitation underneath the hypothesis and architecture of the model, which is defined as the system 
uncertainty in this study.   

The system uncertainty can be recognized by evaluating the discrepancy between observed watershed 
response series and the model outcome during the process of model parameter calibration.  This can be clarified 
by the statement written below: 
 

),~(~ θxfy =                                      (1) 
 
where y~ and x~ denote outcome and input series of a hydrologic model f(・) respectively, and θ  denotes a 
parameter set.  Denoting X and Y are observed watershed input and response series data accordingly and 
assuming x~ = X, then θ  can be determined by adjusting or tuning the value of parameters to make the 
difference between model outcome y~  and observed watershed response data Y in an acceptable range 
according to some objective function.  The procedure of adjusting the value of parameter set is well known as 
“model calibration”.  In this study, least sum of square error (LSE) method is selected as the objective function: 
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where n denotes time step of the simulation time series; m denotes the parameter set to be examined.  

The discrepancy between observed watershed response and model outcome during the process of calibration 
is supposed to be the minimum value by comparison to the possible coming events.  This has often been 
observed that the goodness-of-fit between observed data and estimated data during calibration is better than 
what in validation, not to mention in implementation.  Under this fact, we can say that the uncertainty occurring 
here denotes the predicting limitation of the model.  Since this is the best that a model can achieve. 

 
2.2 Entire uncertainty 

 
The discrepancy of the model outcome to the observed data can be shown as below: 
 

εθ += ),(XfY                                   (3) 
 

where ε  denotes system uncertainty mentioned above, that is, the predicting limitation of the model under 
perfect calibration.  In agreement with this definition, it is clear that the uncertainty came from the process of 
calibration.  But the real uncertainty source is supposed to be the data which is used for calibration.  

After calibrating the model parameter, the calibrated parameter space will reflects its uncertainty through the 
model structure and propagates to the model outcome.  This uncertainty can be recognized by examining the 
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discrepancy between observed watershed response data and model outcome by using input data and parameter 
sets.  Also this is the way of most of the researches dealing with parameter sensitivity.  This uncertainty is 
defined as the entire uncertainty in this study, since actually this is the utmost uncertainty a model could has 
under existing input uncertainty. 

 
2.3 Inherent uncertainty 

 
Another categorized uncertainty what we called “inherent uncertainty” is very difficult to be recognized since it 
always contaminated by the uncertainty of model structure and input data.  Inherent uncertainty is different to 
what so called parameter uncertainty since the propagation effect of model structure is excluded here 
intentionally.  Inherent uncertainty represents the sensitivity of parameter space which determined according to 
the input uncertainty and reflects to model outcomes.  This can be examined by the discrepancy among model 
outcomes derived from different best fit parameter sets.  Watershed response data is not used here, which 
indicates the model structure uncertainty is eliminated as much as possible. 

 
The distance between entire uncertainty and inherently uncertainty is structure uncertainty.  Since the 

parameter set used for extracting both of the uncertainty is the same.  The different is the data used for 
comparison: observed data and outcome during calibration.  The propagation effect plays an important role 
here, which is why the difference between entire uncertainty and inherent uncertainty is called structure 
uncertainty in this study. 

 
3 UNCERTAINTY QUANTIFICATION 

 
Several indexes are selected to perform uncertainty quantification in this study; the basic form of the index is 
statistical second moment and Nash coefficient.  The categorized prediction uncertainties defined in previous 
section are mathematically described as below: 
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(4) and (5) are indices for quantifying system uncertainty, where Qo and Qb indicate the observed watershed 
response series and model outcome by using the best fit parameter set, n is the time step of the time series. SDs 
quantifies the error variance, the residuals, between observed watershed response and the best fitted simulated 
outcomes; while Nashs elucidates the performance of the best fitted simulated outcomes.  SD always larger than 
0, while the range of Nash coefficient is: 1≤<∞− Nash .   
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(6) and (7) are indices for quantifying entire system, where Qe is the model outcomes acquired by using a 
parameter set within the whole parameter space and entire rainfall realizations.  Consequently, SDe explains the 
total prediction error. 
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(8) and (9) are indices for quantifying inherent system.  SDi and Nashi explain the inherent uncertainty because 
Qe is calculated with a possible parameter set identified by other model outcomes, thus, the discrepancy between 
Qb and Qe indicates the error inevitable in a model formulation. 

In order to implement dynamic view of the relationship among system uncertainty, structure uncertainty and 
parameter uncertainty caused by input data uncertainty, the Nash coefficient is used to formulate a Model 
Structure Indicating Index (MSII) and is defined as: 
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The difference between entire and inherent uncertainty denotes the structure uncertainty.  This is used as 

the numerator in the equation, while system uncertainty is used as a denominator to form a criterion to evaluate 
model structure.  The index expresses the total variance unexplained by the standard deviation in a 
dimensionless form.  The range of MSII is: ∞<≤ MSII0 . 

 
4 ALGORITHM FOR UNCERTAINTY RECOGNITION AND QUANTIFICATION 
 
Instead of sampling the parameter space directly like what GLUE did, the study here generates the parameter set 
space by introducing noise item into input data with specified probability distribution.  Here Normal distribution 
with mean equals to zero and standard deviation from 1.0 to 9.0 (mm/hr) is used to acquire model parameter 
space and outcomes under different input uncertainty.  For each iteration, 10000 model outcomes for each 
specified input uncertainty were derived from the combination of rainfall series and parameter set generate output 
series through the model. The system uncertainty and the prediction ability were identified and recognized by 
corresponding parameter set.   

 
5 MODEL DESCRIPTION AND PROCESS OF OBSERVED DATA 
 
To demonstrate uncertainty identification, Storage Function Model (SFM) proposed by Kimura (Kimura, 1975) 
is applied at the Yasu River basin (355km2) in this study.  The form of SFM is as: 
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where S = water storage height; r = rainfall intensity; q = runoff height; t = time step; and Tl = the lag-time.  
This model is often used for the flood runoff calculation in a basin with an area of less than five hundred square 
kilometers in Japan (Takara, 1985).  Parameter p is a constant, commonly the value is 0.6, f is the ratio of 
contribution area of the watershed which generates outflow, RSA is accumulating saturated rainfall.  Parameter k 
is solved by the equation proposed by Nagai et al. (Nagai et al., 1982). A fully functional SFM with parameter 
Tl, f, and RSA  is called Model 1 in this study.  By specifying the value of RSA to 0.0, a poorer-structured model 
called Model 2 is manipulated as a contradistinction in this study. Rainfall data was collected from four rainfall 
gauging stations inside the Yasu River basin (355km2); they are Yasu, Minakuchi, Kouka and Oogawara.  The 
average precipitation was obtained by using Thiessen polygon method.  
 
6 RESULTS 
 
In Figure 1 and Figure 2, the standard deviation of entire, inherent and system uncertainty of model 1 and 2 are 
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shown.  The larger magnitude of entire uncertainty indicates a broader range of model outcomes.  Which also 
indicates a poorer model performance; also this can be examined in Figure 3 and Figure 4: the Nash coefficient 
of entire, inherent and system uncertainty of Model 1 and Model 2.  It is always expected that entire uncertainty 
increases while input uncertainty increasing; where the discrepancy between entire and inherent uncertainty is in 
the same tendency. 

System uncertainty is supposed located in the middle between entire and inherent uncertainty.  The range 
between entire and inherent uncertainty indicates the goodness of a model structure; that is, the ability of a 
model simulates the behavior of the watershed through observed data.  The broader the distance is the worse 
structure the model has.  In Figure 3 and Figure 4, the range between inherent and entire uncertainty of Model 1 
is far smaller than Model 2.  This can be interpreted that the parameter sensitivity of Model 2 is worse than 
Model 1.  The reason can be explained by Figure 5 and Figure 6, which show the upper and lower bound of 
entire model outcomes and model outcomes during calibration of Model 1 and Model 2 under input uncertainty 
4.0 mm/hr.  It shows that Model 2 is incapable to simulate the watershed behavior as Model 1 does.  Even the 
range inside upper and lower bound of Model 2 is far larger than Model 1, the true watershed response is out 
side the range.  This indicates no matter how perfect the calibration is, predicting limitation of Model 2 is worse 
than model 1.  MSII of Model 1 and Model 2 are illustrated in Figure 7.  It shows that the gradient of MSII of 
Model 2 increasing more rapidly than Model 1.  Which not only reveal the goodness of hydrologic model in a 
static view but also reflects the input uncertainty propagates itself through model structure in a dynamic manner. 

 

 
Figure 1.  Standard deviation of model 1. 

 

 
Figure 2.  Standard deviation of model 2. 

 

 
Figure 3.  Nash coefficient of Model 1. 

 

 
Figure 4.  Nash coefficient of Model 2. 

 

 
Figure 5.  Upper and lower bound of Model 1 

outcome with input uncertainty 4 mm/hr. 

 
Figure 6.  Upper and lower bound of Model 2 

outcome with input uncertainty 4 mm/hr. 

285



 

 

 
Figure 7.  MSII of Model 1 and Model 2. 

 
7 CONCLUSIONS 

 
A methodology for uncertainty recognition and quantification is proposed which can be used as a tool for 
hydrologic models quantitative comparison or evaluation.  Instead of sampling the parameter space directly like 
what GLUE did, the study here generates the parameter set space by introducing noise item into input data with 
specified probability distribution.  This reflects the truth that parameter uncertainty came from uncertainty of 
data to hand and the way the model structure responses it.  The results show that within increasing input 
uncertainty, the distance between entire and inherent uncertainty is also increased.  A smaller magnitude of the 
ratio of inherent uncertainty to entire uncertainty indicates the system uncertainty (i.e. the predicting limitation) 
is larger, which means lacking of the ability to simulate the true watershed behavior.  

MSII is proposed to evaluate the goodness of model structure.  The results show that a larger value of MSII 
indicates a poorer structure of hydrologic model, within increasing input uncertainty the tendency becomes more 
apparently.  The index can be used as a tool for implementing model quantitative comparison. 
 
8 ACKNOWLEDGMENT 

 
This study was supported by Grant-in-Aid for Scientific Research (A)(1) 16206050 (PI: Prof. K. Takeuchi, 
Yamanashi Univ.) and CREST program of JST (PI: Prof. K. Takara, Kyoto Univ.). 

 
REFERENCES: 
Kimura, T. (1975).  Storage Function Method.  Kawanabe Books Co., Ltd., Tokyo (in Japanese). 
Nagai, A., Kadoya M., Sugiyama H. and Suzuki K. (1982). "Synthesizing storage function model for flood 

runoff analysis." Disaster Prevention Research Institute Annuals, No. 25 B-2, pp. 207-220. 
Beven, K. (2001). "How far can we go in distributed hydrological modeling?" Hydrology and Earth System 

Science, Vol. 5(1), pp. 1-12. 
Freer, J., Beven, K. and Ambroise, B. (1996). "Bayesian estimation of uncertainty in runoff prediction and the 

value of data: An application of the GLUE approach." Water Resources Research, Vol. 32(7), pp. 
2161-2173. 

Høybye, J. and Rosbjerg, D. (1999). "Effect of input and parameter uncertainties in rainfall-runoff simulation." 
Journal of Hydrologic Engineering, Vol. 4(3), pp.214-224. 

Kuczera, G. and Parent, E. (1998) "Monte Carlo assessment of parameter uncertainty in conceptual catchment 
models: the Metropolis algorithm." Journal of Hydrology, Vol. 211, pp. 69-85. 

Singh, V.P. and Woolhiser, D.A. (1976). "Sensitivity of linear and nonlinear surface runoff models to input 
errors." Journal of Hydrology, Vol. 29, pp. 243-249. 

Singh, V.P. and Woolhiser, D.A. (2002) "Mathematical modeling of watershed hydrology." Journal of 
Hydrologic Engineering, Vol. 7, pp. 270-292. 

Storm, B., Høgh Jensen, K. and Refsgaard, J.C. (1989) "Estimation of catchment rainfall uncertainty and its 
influence on runoff prediction." Nordic Hydro., Vol. 19, pp. 77-88. 

Takara, K. and Takasao, T. (1985) "A new attempt to evaluate rainfall-runoff models from the viewpoint of 
stochastic transformation." Journal of Hydroscience and Hydraulic Engineering, Vol. 3(2), pp. 61-72. 

286


	contents: 


