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ABSTRACT

In this paper, the properties of time scale invariance of rainfall are investigated and applied to Intensity-
Duration-Frequency (IDF) relationships. The hypothesis of simple scaling implies in direct and empirically
verifiable relations among the moments of several orders of rainfall intensities in different durations. Using these
relations, it is possible to analytically derive IDF relationships for short-duration rainfall from the statistical
characteristics of daily data only. The simple scaling model has been applied to precipitation data observed at the

Introduction

The intensity-duration-frequency (IDF)
relationship of heavy storms is one of the most
important hydrologic tools utilized by engineers for
designing flood alleviation and drainage structures
in urban and urban areas. Local IDF Equations are
often estimated on the basis of records of intensities
abstracted from rainfall depths of different
durations, observed at a given recording rainfall
gauging station. In some regions, there may exist a
number of recording rainfall gauging stations
operating for a time period sufficiently long to yield
a reliable estimation of IDF relationships; in many
other regions, however, these stations are either
non-existent or their sample sizes are too small in
developing countries. Because daily precipitation
data is the most accessible and abundant source of
rainfall information, it seems natural, at least for the
regions where data at higher time resolution are
scarce, to develop and apply methods to derive the
IDF characteristics of short-duration events from
daily rainfall statistics. In this regard and in contrast
to earlier empirical disaggregation techniques, the
works of Burlando & Rosso (1996), Menabde et al.
(1999) and Pao-Shan Yu et al.(2004) are examples
of methodologies in which the theories of
scaling properties and employed to infer the IDF
characteristics of short-duration rainfall from daily
data.
This paper aims
1. To present the properties of time scale invariance

of rainfall,
2. To apply them to a location of station in Yodo
cathment of Japan,
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3. To derive a IDF relationship for short-duration
rainfall from daily data, and

4. To compare with traditional method and discuss
the results.

The paper is organized as follows: The next
two sections present the theoretical background
as related to the time scale invariance properties
of short-duration rainfall. In the sequence, these
properties are verified for data observed at rainfall
gauging stations located in the Yodo catchments, in
Japan. The IDF relationship, derived from daily
rainfall data, is then compared to the traditional
estimated curve. Conclusions are given in the last
section.

The generalized IDF relationship

In recent years, the study of phenomena with
scale variance has grown from applications in
physics phenomena such as statistical theories of
turbulence field theory (Gupta and Waymire, 1990)
to hydrologic phenomena such as stochastic rainfall
modeling and intensity-duration-frequency (IDF)
curve formulation. While empirical equations have
been used for nearly one hundred years to explain
the form of IDF curves, scale invariance has helped
to understand these relationships. Sherman (1905)
first developed a generalized IDF relationship, and
many other versions of this relationship have been
developed in the years since. All forms of the
generalized IDF relationships assume that rainfall
depth or intensity is inversely related to the duration
of a storm raised to a power, or scale factor.



The IDF formulas are the empirical equations
representing a relationship among maximum rainfall
intensity (as dependant variable) and other
parameters of interest such as rainfall duration and
frequency (as independent variables). There are
several commonly used functions found in the
literature of hydrology applications (Chow et al.,
1988). Four basic forms of equations used to
describe the rainfall intensity duration relationship
are summarized:

Talbot Equation:
a
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Bernard Equation:
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where i is the rainfall intensity (mm/hour); d is the
duration (minutes); @, b and e are the constant
parameters related to the metrological conditions.

Although many previous studies depend on
curve-fitting techniques, studies generalizing IDF
rainfall formulas have become popular over the past
20 years. These studies include Hershfield (1961)
developed various rainfall contour maps to provide
the design rain depths for various return periods and
durations. Bell (1969) proposed a generalized IDF
formula using the one hour, 10 years rainfall depths;
P, as an index. Chen (1983) further developed a
generalized IDF formula for any location in the
United States using three base rainfall depths: P,
P241 0 P/ 00, which describe the geographical
variation of rainfall. Kouthyari and Garde (1992)
presented a relationship between rainfall intensity
and P, for India.

Koutsoyiannis et al. (1998) have updated the
IDF relationship, for given return period, IDF
relationships are particular cases of the following
general empirical formula:

90

w

[dv+¢9]77 ®)

i:

where i denotes the rainfall intensity for duration d
and w, v, 6, and # represent non-negative
coefficients. A numerical exercise proposed by
Koutsoyannis et al. (1998) shows that the errors
resulting from imposing v=1 in Equation (5) are
much smaller than the typical parameter and
quantile estimation errors from limited size samples
of rainfall data. Considering the specification of v#1
results in over-parametrization of Equation
(5), Koutsoyannis et al. (1998) suggested the
following equation as a general expression of IDF
relationships for a given return period:

i=_Ww (6)
(d+0)"

Rigorously, the coefficients w, 6 and 7 in
Equation (6) are not independent from the return
period. However, because the IDF curves for
different return periods cannot intercept each other,
such a dependence cannot be arbitrary; this
restriction imposes limits to the variation range of
parameters w, 6 and #. For instance, if
fwi, 01, nl} and w2, 02, n2} denote two
different parameter sets for return periods T1 and
T2 < T1 respectively, then Koutsoyannis et al.
(1998) suggest the following possible restrictions to
the parameter space:

(91:(92:(920;0<771:772:77<1;W1>W2>0 (7)

In this set of restrictions, note that the only
parameter that can consistently increase with
increasing return periods is w, which results in
substantial simplification of Equation (6). In fact,
these arguments justify the formulation of the
following general model for IDF relationships:

i= a(T) 3
b(d)

which posseses the great advantage of presenting
separable relationships between i and T and between
i and d. In Equation (8), b(d) = (d + 6)" with >0
and 0<y<1, whereas a(T) is completely defined by
the probability distribution function of the maximum
rainfall intensity. The form of Equation (8)
is consistent with most IDF empirical equations



estimated for many locations: For example
L.M.Nhat et al. (2006) established the IDF curves
for precipitation in the monsoon area of Vietnam.

The scaling of rainfall intensity theory

In this section, a general theoretical
framework for the proposed model is introduced.
Let the random variable I(d) the maximum annual
value of local rainfall intensity over a duration d. It
is defined as:

I(d)= max

0<r<lyear

[!T;(é)dé} o

d 1-d/2

where X (¢) is a time continuous stochastic process
representing rainfall intensity and d is point in time.
Suppose that 1(d) represents the Annual Maximum
Rainfall Intensity (AMRI) of duration d, defined by
the maximum value of moving average of width d
of the continuous rainfall process. The random

variable I(d) has a cumulative probability

distribution, which is given by

Pr{7, <i)=F,(i)=1-— (10)
d—%)*%d

Here, some concepts are introduced about
scaling of the probability distribution of random
functions (Burlando & Rosso, 1996, Menable,
1999). A generic random function I(d) is denoted by
simple scaling properties if obeys the following

A
d — B D

Defining 7 _ 2 as the scaling ratio

I(d)™ = 2"1(Ad) (12)

where H is a non-integer scaling exponent factor.
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The equality “ it ” refers to identical probability
distributions in = both side of the equations.

The Equation (12) may be rewritten in terms
of the moments of order q about the origin, denoted
by E[/;%]; in these terms, the resulting expression is

Elrg]= 2" ey, | 1)
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The scaling exponent, Hg, can estimated
from the slope of linear regression relationship
between the log-transformed values of

moment (10g E [[Zd ])andscale

parameters (log A) for various order of moment (g).
This is definition of “strict sense” simple scaling
(Gupta & Waymine 1990). A less restrictive
definition is “wide sense” simple scaling with d = 1
hour and Ad = 4, given by
Elry]=2%E|r¢] (14)
The scaling exponent H is not constant with the
order of moment (q), as Equation (14), but it varies
as in:

Elre|= 2<@E|r: | (15)
The K(gq) is function of the moment order. The
procedure is adopted to test the suitability of scale
invariant model to describe rainfall process, in here

briefly described in Figure 1. The same moment
E[de ] are plotted on the logarithmic chart versus

the scale A for different moments’ order ¢;. The
slope K(q;) is plotted on the linear chart versus the
moment order g;. If the resulting graph is a straight
line, the field is simple scaling, while in opposite
case of curved line, multi-scaling is observed.

According to Menabde et al. (1999), the only
function form of E[]fd] is capable of satisfying
equation:

a™elrg]= (2a )" glr, ] (16)
F,(i)=F,,[2"i] (17)
Elrg]=k(g)a™ s

For many parametric forms, Equation (18) may be
expressed in terms of standard variant, as in

)=
d

(19)

Where F(.) is a function independent of d. Under
this form, it can be deduced from Equation (18) that

ta =" 14 (20)
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Figure. 1 Simple and multiscaling in term of statistical moments. Fist step, moments of different
orders q are plotted as function of scale in a log-log plot. From the slope, values of the function
K(q) are obtained. If K(q) is linear, the process is simple scaling. If K(q) is non-linear, the proc-

ess is multiscaling.

Substituting Equation (19), (20) and (21) into
Equation (8) and investing with respect to i, one
obtains:

#M(M)H +GM(M)HF1(1_1/T)
dH
By equaling Equation (22) to the general model for

IDF relationship, given by Equation (7), it is easy to
verify that

iy = (22)

H=n (23)
0=0 (24)
bd)=d" (25)
dT)=p,\2d) +o,\2d) F1-UT) ()
. _uror l1-y7) o7

d,T 47

where: 4 = g (Ad)" and o=0,4 (Ad)" are
constants. It is worthwhile to note that the simple
scaling hypothesis leads to the equality between the
scale factor and the exponent in the expression
relating rainfall intensity and duration.
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The simple scaling property, as formalized
by Equation (17), can be empirically verified by
replacing the population moments by the
corresponding sample moments. On the other hand,
in order to verify the validity of Equation (18), one
needs to specify a probability distribution for the
annual maximum rainfall intensities. In such a
context, two of the most frequently used probability
distributions, namely the Generalized Extreme
Value (GEV) and the EV1 or Gumbel parametric
functions, are examples of functional forms that are
compatible with expression (19) and appropriate for
the empirical verification of Equation (18).

Application simple scaling in time series of
rainfall This section describes the application of the
simple scaling model for rainfall intensities, as
prescribed by Equation (27), to rainfall data
observed at the Hikone and Hirakata rainfall station
of Yodo catchments, located in Japan.

A first attempt to verify the simple scaling
hypothesis has been made by using sample moments
in Equation (17), with H = #. Figure 2 depicts the
resulting relationship between sample moment order
q and duration d, both in logarithmic coordinates,
for sample moments of order ¢ = 1, 2, up to 5.
In this Figure 2, it is clear that for all moment orders
considered, there are well defined scale relationships
for durations comprised between 1 hour and 24
hours.
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Figure 2 Relationship between sample moments of order q and duration

The regression between moment E[4] and
duration d, for 1h to 24 h, may also be used to check
the validity of Equation (17). In fact, by represent-
ing the exponent by K (q) =—#ng and plotting it
against ¢, Figure 3 shows there is an almost perfect
linearity between the two variables. Such a linear

relationship confirms the hypothesis of “ simple
scaling in wide sense”, as defined by Equation (17).

The slope of the regression line between K(g) and q

is M=0.6058 for Hikone and M=0.678 for Hirakata
station, as an estimated for the scale factor.

K@)

b7 S —

254--

e R? = 0.9999

35 \ |

"y = 20.6058x - 0.0103

T
B Hikone Station

Figure 3 Relationship between K(q) and the sample moment order q

The IDF relationship for short duration
rainfall can be deduced form daily data by applying
Equation (22) with n=0.6058 for the Hikone station
and with the estimates of up and op with D=24h.
From 24-hour data collected at the Hilkone
recording gauging station, the sample of 21 years of
24hours annual maximum rainfall intensity yields.
the estimates i, = 4.615 and op-y4 = 2.604 .
Back with these estimates and the Gumbel inverse
function, the deduced IDF relationship for the
location of Hikone may be written as Equation (30)
with #=2"i,,= 31.56 and 60=A" ,,=17.81
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o \2d) +0,Gd)" F(1-T) @8
ld,T = dH
and: . p+oF T L(1-1T) (29)
a1~
) dn
i 31.56 —17.81n(~ In(1-1/T)) 30)
;0605



Another traditional way of constructed rainfall IDF
curves by Equation (2) (Bernard Equation).
Frequency analysis techniques are used to develop
the relationship between the rainfall intensity, storm
duration, and return periods from rainfall data.

The cumulative density function (CDF)

F(x)=1-exp (

X —a

B

(32)

Analysis of distribution for rainfall frequency

is

based on the

The probability distribution function for EVI is

,ﬂﬂ=%{

X—a

X —

B

em(

B

“)

EVI (Gumbel) distribution.
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Where oand Pare the parameters. The EVI
distribution used to calculate the rainfall intensity at
different rainfall durations and return periods and
the maximum rainfall intensity for considered
durations and 2, 5, 10, 20, 50,100 and 200 years
return periods, have been determined. The set of
IDF curves can be estimated by Bernard Equation
shown in Figure 4.
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Figure 4 The Rainfall Intensity-Duration-Frequency (IDF) curves for Hikone station by Bernard Equation.
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The Rainfall Intensity Duration Frequency
curves for Hikone station can be reconstructed be
scaling methods by Equation (30), it is show small
differences, with higher values for increasing return
periods. Figure 5 shows how the IDF relationships,

regional climatic characterize.
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as calculated by Equation (30) and plots as the
return period varies from 5 to 100 year returns. The
scale factor 1, along with parameters ¢ and ( in
Equation (29), may be interpreted as
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Figure 5 The Rainfall Intensity Frequency Curves at Hikone station, Yodo Catchments, Japan by scaling method.

Conclusions

In the paper, a simple analytical formulation
for rainfall IDF relationship, which utilizes the
scaling behavior is presented. The proposed
approach is based on scaling properties of rainfall
time series. The hourly IDF curves were derived in
a normalized form apart from EVI (Gumbel)
distribution fitted to the maximum rainfall intensity
for several durations between 1 hour and 24 hours
collected in 2 stations at Yodo catchments of Japan.

The IDF curves for short duration (hourly)
were derived from 24-hour data. The simple
scaling property verified by local data; then IDF
relationships are deduced from daily rainfall which
show good results as compared to IDF curves
obtained from at-site short-duration rainfall data.
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