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Introduction

The problem of model structural uncertainty
with advanced automatic calibration methods is an
issue of increasing interest in recent researches
(Yapo et al., 1996; Gupta et al., 1998; Boyle et al.,
2000, Vrugt et al., 2003). Gupta et al. (1998)
pointed out that a subjective selection of objective
functions (e.g., SLS, RMSE, HMLE) for calibration
of conceptual hydrologic models lead to an
overemphasis on a certain aspect of the response
(e.g., peak flows), while neglecting the model
performance with regard to another aspect (e.g., low
flows). In other words, different parameter
combinations can exist according to various
objective functions due to the presence of structural
uncertainty. Structure error is unavoidable problem
in hydrological modeling since hydrologic models
are conversion and simplification of reality, thus no
matter how sophisticated and accurate they may be,
those models only represent aspects of conceptuali-
zation or empiricism of modelers. In consequence,
output time series of hydrologic models are as
reliable as hypothesis, structure of models, and
quantity and quality of available forcing data, and
parameter estimates (Gupta et al., 1999).

Hydrologists have concentrated their effort
on development of more powerful model calibration
scheme to assess the suitability of model structure
for representing the natural system and for
identifying model structural inadequacy (Gupta et
al., 1998; Boyle et al., 2000). Their new scheme
well explains the inherent multi-objective nature of
the problem and the role of model errors in rainfall-

runoff simulation. However, their research is limited
to improve a classical calibration strategy, i.e.,
single-objective optimization algorithm coupled
with their own conceptual models (e.g., SAC-SMA
model). Hence, it is questionable that a physically
based distributed model, which has a different
model structure to reflect real rainfall-runoff
processes from a conceptual model, results in the
overemphasis on particular portion of predicted
hydrographs or whether optimal parameter sets
change or not according to objective functions. As
reported in previous studies (Yapo et al., 1996,
1998; Gupta et al., 1998; Boyle et al., 2000), the
result of variation of optimal parameter combination
calibrated by a single-objective optimization method
can be employed as one of the well-founded
indicators to account for model structural stability.

This study is conducted to investigate
answers to the following questions: 1) What kinds of
models are stable in terms of model structure
for description of rainfall-runoff process? (i.e.,
Definition of model stability). 2) How can modelers
or engineers identify model stability and suitability?
(Methodology for identifying model stability
and suitability). A framework is outlined as an
attempt to assess the model structural stability using
single-objective global optimization method. The
Shuffled Complex Evolution (SCE-UA) algorithm is
used to calibrate a conceptual lumped model,
Storage Function Model (SFM) and a physically
based distributed model, CDRMV3 using five his-
torical flood events (see Table 1) from Kamishiiba
catchment located in Kyushu area.

Parameters Sept. 1997 | June 1999 | Aug. 1999 | Sept. 1999 | Sept. 2005

Peak discharge (m’/s) | 1203 210 489 644 1840

.- - 3
ir)ntlal discharge (m’/ 33 59 82 34 11
Total amount of rain- 496 463 473 339 831
fall (mm)
Total amount of dis- 415 238 237 256 780
charge (mm)
Runoff ratio 0.84 0.51 0.50 0.77 0.94

Table 1 The characteristics of each year heavy rainfall and flood discharge at Kamishiiba catchment.
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Fig. 1 Schematic illustration of a framework to assess model structural stability;

Index]

J
= optimal parameter set;

= guideline index for assessment of model structural stability; i = objective Function; j = storm event.

Our purpose of this study is to establish a
framework for how to assess the model structural
stability. This work is summarized by two
main procedures. The first step is a qualitative
identification of model stability according to
selection of objective functions. The second
procedure is a quantitative assessment of model
structural stability through the analysis of parameter
transferability with a development of benchmarks or
guideline indexes. Figure 1 illustrates the schematic
process of the framework for assessment of model
structural stability.

This assessment procedures are based on the
following ideas:

1) If hydrologic forcing input data (e.g., rainfall,
stream flow) for model calibration using efficient
and robust optimization algorithm are not
erroneous, calibrated parameter set can reflect
explicitly the structural stability of hydrologic
model.
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2) An ideally-structured model can be regarded as a
stable model which has the identical best
parameter set regardless of objective functions
and have high parameter transferability from

Eventl | pEveniN

event to event, i.e., QOF' HOF” .

3) Therefore, variation of optimal parameters
calibrated by wusing an appropriate single-
objective optimization scheme can be one of the
indicators for assessment of model structural
stability.

After considering synthetically all concepts
above mentioned, we conclude that a more reliable
model structure leads to the constant optimal
parameter set without regard of any objective func-

~
~

eEveml e~ eEveml
. . . . OF, ~ Yor,
tions selected subjectively, i.c., .
Moreover, such model structure maintains high

degree of accuracy for predicted hydrographs when



applying parameter set for various type and
magnitude of floods in the same study site, i.e.,

eg;eml PO eg;entN
‘ . As a result, model structural
stability is evaluated by the ability enable to reduce
the influence of objective functions and flood
events. Two different types of model structures are
applied to compare model structural stability for
verification of our framework and each model is
calibrated by SCE-UA optimization strategy with
three objective functions. Applied models and
optimization method, objective functions are

introduced in following sub-sections.
Hydrologic Models

Conceptual lumped model, Storage Function
Model (SFM)

This model is a lumped model with the
reflection of nonlinear characteristics of hydrologic
response behavior. SFM is used for the rainfall-
runoff simulation in a small watershed usually less
than five hundred square kilometers in Japan. The
form of SFM is expressed as:

{fxr,
]:2 =
r,

if ZrSRS y
iff D r>R,
where, S = water storage; r, = effective rainfall
intensity; » = rainfall intensity; ¢ = runoff; t = time
step; k = storage coefficient; p = coefficient of

)

T,
nonlinearity; f = primary runoff ratio; P = lag
R . .
time; and ' = cumulative observed rainfall from

the beginning of storm.

Physically based distributed model, CDRMV3

CDRMV3 is a physically based distributed
hydrologic model developed by Kojima et al. (2003)
including discharge-stage relationship  with
saturated-unsaturated flow (Tachikawa et al, 2004).
The model solves the one-dimensional kinematic
wave equation with the discharge-stage equation
using the Lax-Wendroff finite difference scheme
according to orderly nodes and edges, edge
connection based on flow direction map (see Figure
2). All geomorphologic information are extracted
from 250m based DEM data. Channel routing is also

ds » (1 carried out by the kinematic routing scheme
7=re(t_7’l)_q9 Squ . .
dt as well as calculation of slope elements reflecting
contributing areas.
(a) (b) =
Radar Rainfall 5
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Fig. 2 Schematic representation of CDRMV3 (a) Modular structure of CDRMV3 (b) Distributed grid rainfall data
(c) Close-up of edges and nodes extracted DEM (d) Model structure for the hillslope soil layer and discharge-

stage relationship.
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The model assumes that a permeable soil layer
covers the hillslope as illustrated in Figure 2(d).
The soil layer consists of a capillary layer which
unsaturated flow occurs in and a non-capillary layer
in which saturated flow occurs. According to this
mechanism, if the depth of water is higher than the
soil depth, then overland flow occurs. The
discharge-stage relationship is expressed by
equation (3) corresponding to water levels (see Fig-
ure 2(d)) defined as:

vd, (h/d)’, 0<h<d,
g=1iv.d +v,(h—d), d <h<d, G)
vd, +v,(h—d)+a(h-d)", d,<h
@+a—q:r(t) @
ot Ox

Flow rate of each slope segment are calculated by
above governing equations combined with the conti-

. . v, =k v, =k,
nuity equation (4) where, ; ;

k.=k, /B a=Ailn .. . ¢ .
; ; i 1s slope gradient, is
saturated hydraulic conductivity of the capillary soil

layer, is hydraulic conductivity of the
non-capillary soil layer, n is roughness coefficient,

is the depth of the capillary soil layer and
is soil depth. Detailed explanations of model
structure appear in Tachikawa et al. (2004).

Shuffled Complex
Algorithm

The reasons for difficulties in automatic
calibration with respect to the response surface of
parametric structures, i.e., existence of numerous
local optima, non-smooth response surface,
non-convex shape around global optimum, motivate
a development of a global search algorithm in
rainfall-runoff modeling (Sorroshian and Gupta,
1995). Evolutionary algorithms are probably the
most commonly applied global optimization
methods in rainfall-runoff simulation. The Shuffled
Complex Evolution Algorithm (SCE, Duan et al.,
1992; 1993; 1994), one of the computer-based
automatic optimization algorithms, is a single-
objective optimization method designed to handle
high-parameter dimensionality encountered
in calibration of a nonlinear hydrologic simulation

Evolution (SCE-UA)
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models, apart from the Genetic Algorithm. This
evolutionary approach method has been performed
by a number of researchers on a variety of models
with outstanding positive results (Gupta et al., 1999)
and has proved to be an efficient, powerful method
for the automatic optimization (Gan and Bifu, 1996;
Yu et al, 2001). Basically, this scheme is
synthesized by following three concepts:
(1) combination of simplex procedure with the
concepts of controlled random search approaches;
(2) competitive evolution; and (3) complex
shuffling. The integration of these steps above
mentioned makes the SCE method effective, robust
and flexible (Duan et al., 1994).

Objective Functions

The aim of computer-based automatic
calibration is to find those values of the model
parameters that minimize or maximize the numerical
value of the objective function (Sorooshian and
Gupta, 1995). Frequently, a number of statistics and
techniques are utilized for evaluations of the model
predictive abilities. In general, many objective
functions contain a summation of the error term and
to avoid the canceling of errors of opposite sign, the
summation of the squared errors is often used for
objective functions (Legates and McCabe, 1999).
The most commonly utilized objective functions in
hydrological modeling are variations of the Simple
Least Squares (SLS) function defined as:

SLS =" (¢ - q,(0))* ©)

obs

where is observed stream flow value at time ¢;

q,(0) . .
is model simulated stream flow value at

time ¢ using parameter set ; N is the number of
flow values available.

The main reason for the popularity of SLS
has been its direct applicability to any model. The
selection of SLS as an objective function implies
assumptions concerning the probability distribution
of the errors: 1) the residuals are independent and
identically distributed; 2) the residual distribution
has homogeneous variance; and 3) the residuals are
normally distributed (Yapo et al., 1996).

Moreover, the largest disadvantage of
SLS is the fact that the differences between the
observed and predicted values are calculated as
squared values. This shortcoming results
that larger values in a time series are overestimated



whereas lower  values are neglected (Legates and
McCabe, 1999). Krause et al. (2005) proposed the
modified index of agreement (MIA, Willmott, 1984)
to overcome the inefficiency of these measures with
squared errors. This objective function is calculated
as:

n (g™ _ g (0 2
Z[q"()} ©)

Mid=1- AN, &

mean obs mean 2
: [q,(ﬁ)—q, +g." — 4, J
o= qmean
' where

is a mean value of observed time series.

Sorooshian and Dracup (1980) remarked that
the problem often encountered in rainfall-runoff
modeling is the fact that the residuals variance
increases with increasing flow values, i.e., the
assumption of homoscedascity cannot be justified.
When we plot the residuals versus predicted runoff,
we can easily find out whether the variance of the
residuals increases with increasing flow values, i.e.,
the problem heteroscedascity. Generally, the
commonly practiced methods of handling this
heteroscedastic error cases in natural system have
been through the application of Weighted Least
Squares (WLS) function and transformation
functions (Sorooshian and Dracup, 1980). They
suggested the Heteroscedastic Maximum Likelihood
Error (HMLE), which enables the estimation of the
most likely weights through the use of the maximum
estimation theory. This new procedure can eliminate
some of the subjectivity involved in the selection of
transformation and/or a weighting scheme and
yields a more balanced performance over the entire
hydrograph (Yapo et al, 1996; Gupta et al., 1998). It
is calculated as:

(7

l/Nz we,
n;i/ln HMLE =——1=

N
[1w

t=1

N
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obs
& =q"-q,0)
where ' M a( is the model residual at
. Wt . . . .
time t; is the weight assigned to time t,
2(A-1) true

w, = =

computed as Y . Where Jo=a is the

i1s the unknown
stabilizes the

expected true flow at time ¢,
transformation parameter which
obs

variance. Fulton (1982) recommended using

. q,(0 .
instead of to approximate

In this study, above mentioned three objec-
tive functions are used in the calibration trials and
the analysis of hydrologic model stability.

Result and Discussions

The impact of objective functions to model per-
formance

The plots of comparison between the simulated and
the observed hydrographs according to the three
objective functions (SLS, MIA and HMLE) are il-
lustrated in Figure 3.

From Figure 3, we notice that:

1) In SFM cases, the simulated hydrographs based
on the parameters calibrated by SLS are close to
the observed ones while other parameters
optimized by HMLE, MIA lead to less magnitude
than the real measured stream flows under big
flood events (e.g., Event 1, 4, 5).

2) The calibrated parameters based on MIA, HMLE
result in underestimated outcomes in big flood
but simulated results obtained from small floods
reproduce closely to the observed (see Figure 3
(a)).

3) In CDRMV3 cases, all simulation results shown
in Figure 3(b) are close to observed discharge for
any objective functions. This result implies that
the problem of subjectivity related with selection
of objective functions for model calibration based
on single-objective optimization algorithm can be
ignored for distributed hydrological modeling
used here.
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Fig. 3 Comparison between the simulated and the observed hydrographs according to three objective functions;

(a) SFM cases, (b) CDRMV3 cases.
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The Assessment of Parameter Transferability
from Event to Event

Despite of successfully calibration as
shown in Figure 3, it is still questionable that best
parameter set obtained from the event selected
subjectively can be applicable to other arbitrary
events in study site. If we expect good simulation
results from transferred best parameter set, we can
regard such model as a stable model structure,
which has high parameter transferability. The each
performance from transferred parameter sets are
evaluated by peak discharge ratio (PDR) and Nash-
Sutcliffe(NS) statistics of the residuals as guideline
indexes for measurement of parameter transferabil-
ity, defined as:

PDR= Peak,, | Peak,, (8)
N N
NS =1- ( obs (6))2 / ( obs ___mean )2
- qt qt qt q 9
P p ©)
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sim

where is the simulated peak discharge,
mean

is the observe peak discharge and is
the mean observed discharge. PDR measures the
tendency of the simulated peak discharge to be
larger or smaller than the observed peak discharge;
the optimal value is 1.0, larger values than 1.0
indicate an overestimation of the simulated peak
discharge and smaller values than 1.0 indicate an
underestimation of the simulated peak discharge. NS
measures a relative magnitude of the residual
variance to the variance of the observed stream
flows; the optimal value is 1.0.

Peak,,_

The quantified results of parameter transferability
are plotted in Figure 4. As shown in Figure 4(a) and
Table 2, the conceptual lumped model has low
parameter transferability while the physically based
model has high parameter transferability from event
to event. Nevertheless, a successful transfer of
parameters in CDRMV3 model, the results simu-
lated by optimal parameters of Event 2 over entire
cases are inaccurate; NS values
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Fig. 4 Plots for assessment of parameter transferability from event to event; each point indicates the evaluated

NS, PDR due to parameter transfer.
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are usually less than 0.7 and PDR values are
underestimated/overestimated irregularly. This
result indicates that Event 2 input data during
calibration has poor information. Moreover, this
finding is allowable hydrologist or modelers to
distinguish a high or low quality data. In
CDRMV3, all of the measured points described in
Figure 4 due to three objective functions converge
into one position while points obtained from SFM
are scattered very irregularly.

Unfortunately, the constant single optimal
parameter set over all storm events is not observed

Eventl EventN
Oor " # O

in the study site, i.e., . In the
physically based distributed model, the different
parameter combination also can lead to acceptable
model performances with proper values of NS or

Evendl _,

~ IEventN
or = ~

OF,

PDR, i.e., This finding is
strongly connected with “equifinality” (Beven,
2001). Therefore, the perfect framework of model
structural stability still require analysis of
uncertainty sources in hydrological processing and
its effect on the predicted output variable.

Conclusions

In this paper, we have demonstrated a
framework for assessment of model structural
stability through a single global optimization
method (SCE-UA) and comparison of two
hydrologic models (SFM, CDRMV3). The results
under our framework lead to following conclusions
that either conceptual lumped model or physically
based model is suitable for rainfall-runoff simulation
if based on available informative data during model
calibration, and that the simulated results of
CDRMV3 are not affected by objective functions
while the computed results of SFM are fluctuated
according to objective functions. Then, we test pa-
rameter transferability from event to event in the
study site. The structural stability of CDRMV3 is
superior to SFM in terms of parameter transfer.
However, even though a physically based distrib-
uted model leads to high parameter transferability,
problems of uncertainty still remain to be unsolved.
The principal reason is that the identification of an
appropriate model structure and the identification of
appropriate parameter set within this structure are
difficult due to a range of uncertainties involved in
the modeling process, which are also unavoidably
propagated into the model output. Therefore, the
analysis of uncertainty in the modeling process must
go side by side with identification of stable model
structure.

Table 2 Evaluated NS and PDR for testing parameter transferability

Applied | Parameter SFM CDRMV3
Event Set HS _SLS | PDR_SLS | HS HMLE | PDR_HMLE | HS_MIA |PDR_MIA| HS_SLS | PDR_SLS | HS _HMLE | PDR._HMLE | HS_MIA | PDR_MIA
Everitl 0.94 1.04 0.57 0.80 089 0.52 0.99 1.02 099 1.03 0489 1.05
Evert2 0.56 0.47 0.56 0.48 053 0.53 065 0.58 0.85 0.72 0.88 07s
Evert3 0.5 077 0.7 0.69 0.80 .70 0.99 1.05 047 0482 0483 0494
Everit4 043 0.94 0.56 051 0.54 0.75 0487 1.11 047 1.06 0496 1.07
Event1 Everts 0.51 0.90 0.71 0.70 0.76 0.70 0.95 1.04 0.96 1.02 0.94 1.07
Eventl 0.37 1.39 0.35 1.34 025 1.41 0.69 1.25 0.67 1.25 0.66 1.27
Evert2 0.55 1.00 055 1.02 082 1.1 096 0482 0.53 113 0.83 1.14
Evert3 0.34 1.39 0.45 1.32 046 1.33 063 1.28 .70 1.22 0.57 1.26
Evert4 0.56 1.26 .20 0.80 035 1.32 0.55 1.35 0.55 1.40 0.55 1.41
Event2 Everts -0.96 0.55 -0.57 0.92 0.09 1.02 0.49 1.33 0.57 1.33 0.53 1.34
Everit1 072 1.06 0.54 0482 0.89 0.93 0.95 0.56 0.5 085 0485 088
Evert2 077 067 077 057 0.54 0.7 0.7 0.64 056 055 087 0.eq
Evert3 0.95 0.55 0.94 0.52 085 0.54 0.965 0.92 0.96 0480 096 0.481
Everit4 077 1.m 0.54 0.69 0.85 0.55 0.94 0.57 043 0.54 0483 085
Event3 Everts 0.35 1.01 0.39 0.57 0.59 0.57 0.92 1.05 0.94 1.03 0.93 1.06
Evertl 0.492 1.11 0492 0482 0480 047 0.5 0.74 0.95 0.75 0.96 078
Event2 0.76 0.a7 0.76 0.7 073 0.64 0.60 0.4z 0.7z 0.47 0.7 0.49
Evert3 0.54 0.93 0.54 0.83 0.54 0.54 047 052 0.492 0.73 0.94 077
Evert4 0.93 0487 065 051 0481 056 099 057 0.95 0.83 0.95 0.85
Eventd Everts 0.67 0.65 0.72 0.54 0.52 0.70 0.92 0.97 0.94 0.92 0.92 0.96
Event1 0.93 0.94 0.91 0.76 0.91 0.77 0.52 0.98 0.83 0493 0.3s 1.00
Evert2 065 0.45 0.65 0.45 0.71 0.53 0.49 0.59 062 0.7 055 nra
Evert3 0587 072 0.53 0.55 0.54 067 0.57 1.00 0587 087 0.86 089
Everit4 0.94 080 0.75 0.57 0.89 072 0.56 1.06 0.3 1.01 0.85 1.04
Event5 Everts 0.98 0.92 0.91 0.74 0.90 0.72 0.98 1.02 0.95 1.02 0495 1.07
AVE. 0.63 0.90 0.6 0.77 0.70 0.55 0.50 0.95 0.53 0.94 0.53 0.97
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