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Abstract

A distributed hydrological model is often needed to analyze spatially variable hydrologic behavior. Such a model can be

difficult to set up, especially for an ungauged basin, as it demands a massive amount of data. Moreover, there is an additional

challenge of selecting a proper grid resolution as the grid size selection generally leads to predictive uncertainty and also

directly determines the amount of work required. In this study, a distributed macro-scale hydrological model, named as the

MaScOD model, is applied with a 10-min spatial resolution to the Huaihe River basin, China, to simulate discharge at Bengbu

(132,350 km2) and at sub-basins at Wangjiaba (29,844 km2) and at Suiping (2093 km2). A range of input data resolutions are

used, from 10 min to 2.58, based on an experimental hydro-meteorological input data set abstracted from the GAME re-analysis

data and the Hubex-IOP EEWB data. Performance of the model is evaluated by comparing observed discharge against

simulated discharge for a range of IC-ratio values (the ratio between the input forcing resolution and the Catchment area).

Similar results are obtained for all three catchments, despite their different sizes. It is found that improvement in distributed

model performance is more pronounced below the IC-ratio 1:10, whereas the rate of improvement is negligible above the IC-

ratio 1:20. The IC-ratio range 1:10–1:20 is found to be the optimum performance range considering the data and resource

demands of distributed models. This may provide a preliminary criterion for selecting the scale for distributed hydrological

modeling in ungauged basins.
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1. Introduction

To fulfill the heavy demand for distributed data is a

major challenge in distributed hydrological modeling,
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despite the superior ability of such models to analyze

spatially variable hydrologic behavior and the impacts

of natural and human activities on runoff (Refsgaard

and Abott, 1996). Ungauged basins present the

greatest challenge, as most ungauged basins have

basically no hydro-meteorological data other than that

from regional or global data sets obtained from

reanalysis of a limited number of observations using a

General Circulation Model (GCM) or a meso-

scale numerical weather prediction model. Regional
Journal of Hydrology 319 (2006) 36–50
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hydro-meteorological data, such as GAME-IOP 1.258

reanalysis data which covers the Asian Monsoon

region (JMA, 2000), and HUBEX-IOP EEWB 5-min

data which covers the Huaihe Basin in China (Kozan

et al., 2001), can help compensate for the absence of

ground-based hydrological instrumentation. How-

ever, the limitations of regional datasets may severely

limit the accuracy in the hydrological simulation.

Obtaining satisfactory results by using regional

datasets depends on the resolution of the dataset and

catchment scale because current regional datasets are

often too coarse (Burlando and Rosso, 2002), they

may not be adequate, in the case of small-scale

hydrological modeling, to describe the variability in

hydrologic process components at the basin scale. To

understand the hydrologic predictive uncertainty

associated with the gap between the need and the

availability of input data for distributed hydrological

modeling will provide guidance in setting up an

appropriate hydrological modeling framework and on

the selection of an appropriate data scale.

There is a choice to make regarding the required

resolution of hydro-meteorological input data. The

resolution of input data has a direct link with the

modeling resolution in distributed hydrological

modeling, since the model’s resolution is often set

equal to or finer than the input data. The grid cell size

selection will generally lead to predictive uncertainty

and the challenge is to determine a scale above which

spatial variability can be neglected, with average

characteristics of a given area providing sufficient

information for accurate modeling of basin runoff

(Sivapalan and Kalma, 1995; Blöschl and Sivapalan,

1995; Molnar and Julien, 2000). Coarser resolution

hydro-meteorological datasets, such as outputs from

currently available atmospheric models (which may

extend to hundreds of kilometers) do not satisfy the

need of hydrologists. Also, there are serious scale

issues within hydrological analysis (Koren et al.,

1999) and within meteorological analysis (Renssen

et al., 2001), and these problems are essentially

mismatched. The scaling issue assumes an even

greater significance when developing regional or

global hydrology models (Singh and Woolhiser,

2002) or in continental scale catchment modeling.

The discrepancy in scale between meteorological

models and hydrologic models will continue until

reliable criteria emerge to provide guidance on
the optimal scale for investigating hydrological

processes.

The scale and resolution issues are raised here with

a view to finding if there is a certain preferred or

consensus scale of input data at which optimal

performance may be feasible in distributed hydrologic

modeling. Several researchers have investigated scale

and resolution issues for distributed hydrologic

modeling. For example, Bathurst’s (1986) suggestion

to divide the watershed into elements no larger than

1% of the total area was a conclusion from his study

on the Wye watershed (10.55 km2) using the SHE

model, to ensure that each grid element was more or

less homogeneous. Introducing the concept of a

representative elementary area (REA), Wood et al.

(1988) found that an REA of approximately 1 km2

existed for the hydrologic response of the Coweeta

watershed. The size of REA was more strongly

influenced by basin topography than by rainfall length

scales (Woods et al., 1995) and its limited utility are

discussed by Fan and Bras (1995). Zhang and

Montgomery (1994) proposed a 10 m grid size as a

compromise between increasing spatial resolution and

data handling requirements by examining the effect of

digital elevation model grid size on the portrayal of

the land surface and hydrological simulations.

Bruneau et al. (1995) suggested an optimum region

for modeling with a grid size of 50 m after analyzing

the effect of space and time resolutions using

TOPMODEL on the Coetdan Experimental watershed

(12 km2), in France. The simple scaling and multi-

scaling framework (Gupta et al., 1994), the HRU

(Hydrological Response Units) concept (Flügel,

1995), and the basin-scale model equations (Kavvas

et al., 1998) provide understanding of scaling effects

in distributed hydrologic modeling. Other research

focusing on the effects of grid size on model

parameters and hydrologic response include Quinn

and Beven (1991), Franchini et al. (1996), Saulnier

et al. (1997), Sunada et al. (2001), Horritt and Bates

(2001), and Shrestha et al. (2002). However, despite

these efforts, a suitable resolution for distributed

hydrological modeling is still difficult to establish.

Selecting a higher resolution in distributed hydro-

logical modeling brings with it heavy tasks of data

acquisition, defining the model parameter values, and

complex calculations. These tasks increase the cost of

modeling. In addition, higher resolution increases
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the risk of insistent error amplification. On the other

hand, selecting a lower resolution greatly reduces the

workload but risks losing the advantage of the

distributed modeling approach, leading to poor results

due to lack of consideration of important spatial

features. Therefore, a choice of appropriate scale is

prominently needed to attain optimum model per-

formance. We consider that the first step in this

process is the selection of an appropriate input data

resolution. Knowledge of the effect of forcing input

scale is important for both hydrological and meteor-

ological studies. Ability to choose an adequate input

resolution at the preliminary investigation stage will

result in an appropriate modeling framework, with

fewer problems later and higher simulation accuracy.

In this paper, a criterion for selection of an

appropriate input data resolution is expressed in

terms of the IC-ratio (the ratio between the model

input spatial resolution and the area of the catchment;

Shrestha et al., 2002), based on the sensitivity of a

distributed hydrological model’s performance to the

scale of an experimental hydro-meteorological input

dataset based on GAME-IOP reanalysis data and

HUBEX-IOP EEWB data. Applying the MaScOD

(Macro-Scale OHyMoS assisted Distributed) hydro-

logical model with a fixed 10-min model resolution,

the study is conducted on the Huaihe River Basin,

China, by simulating the hydrographs at Bengbu,

Wangjiaba and Suiping (having contributing areas of

132,350; 29,844 and 2093 km2, respectively) for

various spatial input data resolutions, from 10 min

to 2.58. In Section 2, the MaScOD macro-scale

distributed hydrological model is described. Section

3 deals with the hydro-meteorological input data used

in this study, and the discharge simulation results are

given in Section 4. Section 5 provides an analysis of

the results in terms of the IC-ratio. In Section 6, the

selection of an appropriate input data grid resolution

(in the context of a proposed IC-ratio Rule) is

discussed, and conclusions are presented in Section 7.
2. The MaScOD macro-scale distributed

hydrological model

Macro-scale hydrological modeling is often prac-

ticed for a large river basins. It is possible to incorporate

preliminary tasks involved in the modeling, such as
basin partitioning, hydrological process modeling for a

sub-basin, linking sub-basin models together to make a

total runoff model, and processing channel network

linkages to incorporate river flow routing, into an

automatic procedure (Tachikawa et al., 2002) with the

assistance of an object oriented hydrological modeling

system—OHyMoS (Takasao et al., 1996; Ichikawa

et al., 2000). The “Macro-Scale OHyMoS assisted

distributed hydrological model” (referred to hereafter as

the MaScOD model) is developed accordingly, and is

briefly presented here.

The MaScOD model subdivides a watershed basin

into grid-cells according to a defined grid system that

also facilitates the direct input of hydro-meteorologi-

cal data from a meso-scale atmospheric model. This

model considers the exact location and linkage of

river segments within grid-cells to give better flow

routing, resulting in a better simulation of the

discharge hydrograph. An automated procedure re-

arranges the vector river networks (Fig. 1) by dividing

up grid cell frames into separate sub-network

elements and re-assigning new identities.

The MaScOD model consists of a MaScOD

Element Model (MEM) on every grid cell. The total

number of MEMs for the entire catchment depends on

the size of the catchment, and the grid cell resolution

(which is fixed at 10-min in this study). Each MEM,

having a river segment inside the grid cell, contains a

runoff process model (RPM), based on the Xinanjiang

model (Zhao, 1992), and a flow routing model (FRM)

based on the lumped stream kinematic-wave equation

(Shiiba et al., 1996). The MEM can have multiple

numbers of RPM inside the same grid cell when the

grid cell contains multiple river segments. The total

number of MEM constituents (the RPM and FRM) is

determined on the basis of the river network re-

arrangement procedure. Each RPM receives input

from its own sub-catchment, i.e. from the fraction of

the grid cell defined as the proportion of the length of

the RPM’s river segment to the total length of river

segments inside the grid cell. The RPM yields runoff

directly from impervious area and from groundwater

storage (Fig. 2). This is given by

R Z Qi CkgS2
g (1)

where R is the runoff; Qi is the discharge from

impervious area; kg is the yield parameter; and Sg is



Fig. 2. Schematic of the runoff process model (RPM).

Fig. 1. River networks inside the study region, Huaihe River Basin, China.
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the groundwater storage. The Qi is given by

Qi Z AiðP KEÞ (2)

where Ai is the impervious proportion of a basin; P is

the precipitation; and E is the evapo-transpiration.

The groundwater storage Sg is continuously updated

by the discharge from the pervious portion Qp, which

occurs after the soil water storage capacity is

exceeded:

Qp Z ðP KEÞð1 KAiÞKWm CW ;

when im % i0 CP KE
(3)

If

imR i0 CP KE; then Qp

Z ðP KEÞð1 KAiÞKWm CW

CWm 1 K
i0 CP KE

im

� �1Cb

(4)

where W is the current soil water depth that

contributes to evapo-transpiration; i0 is current water

depth in the unsaturated zone;, im is the maximum soil
water depth; and Wm is the maximum storage depth

over the basin expressed as

Wm Z
im

1 Cb
ð1 KAiÞ (5)

The soil water depth i is given by

iðAÞ Z im 1 K AKAi

1KAi

� �1=b
� �

when Ai %A%1:0

0 when 0%A%Ai

8<
:

(6)



Fig. 4. Structure of the MaScOD element model (MEM).
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where A is the fraction (in the range 0–1) of a sub-

basin that contributes to a particular segment of the

river; and b is a model parameter that depends upon

the shape of the soil water storage capacity

distribution.

The FRM models flow routing along the river

network. This is given by

Qjðx; tÞ Z Qjð0; tÞCq0ðtÞx (7)

where Qj(x,t) is the jth segment discharge at distance x

from an upper end; Qj(0,t) is the inflow at the upper

end of the drainage segment; and q0(t) is the discharge

flux rate in space along a drainage segment, as given

by the RPM. The RPM and the FRM are connected

through a data-sending port (DSP) and a data-

receiving port (DRP) (Fig. 3). The FRM computes

discharges from the MEM outlets. To reduce the

computational burden, it assumes that the discharge

varies linearly along each river segment at each time

step instead of computing that for each computational

cross-section within the grid-cell (Shiiba et al., 1996).

The functions of the DSP and DRP are to exchange

computed data (Fig. 4) within each grid-cell and

between the MEMs. Inside the MEM, the DRP feeds

grid-cell-mean input data (such as precipitation and

evapo-transpiration averaged over each grid-cell) to

the RPM, which produces runoff from the grid-cell.

The DSP feeds that value into the FRM. The FRM

receives information through its DRP from the RPM

of the same grid and the adjacent MEMs of upstream

grids in order to provide the discharge to the

downstream MEMs. The accumulated values are

transferred to the downstream MEMs only after

calculations for all upstream MEMs are completed.
Fig. 3. Schematic of the flow routing model (FRM).
The flow path of the river network is linked to provide

a total runoff simulation model that is a combination

of MEMs (Fig. 5).

The RPM in the MaScOD model considers the soil

properties and interacts with the FRM in terms of

lateral flow. The FRM considers topographic attri-

butes such as channel slope using kinematic wave

routing. Piecewise connectivity of the flow network

and the calculation sequence from upstream to

downstream help reduce bias.

The discharge simulation is conducted in Huaihe

River Basin (270,000 km2). The Huaihe River, one of

the China’s major rivers, runs for about 1000 km

between the Yellow and Yangtze Rivers, through

Henan, Anhui, Jiangsu, and Shandong provinces.
Fig. 5. Schematic of total system.



Fig. 6. Locations of discharge observation points.
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This region is home to a population of about 165

million and frequently undergoes disastrous flooding.

The MaScOD model parameters were calibrated on

the basis of field observation records in the Shiguan

River Basin (6000 km2), a sub-basin of the Huaihe

River Basin, which is assumed to be representative of

the physiographical characteristics of the entire basin.

The hydro-meteorological data obtained from 48

rainfall stations, five discharge stations and four pan

evaporation stations inside the basin were utilized to

calibrate the model. The model parameters calibrated

for the Shiguan River basin were subsequently

assigned to the entire study area, the basic assumption

being that the similar regions should have similar

parameter values. Separate parameter sets were

calibrated for mountainous and flat regions. Topo-

graphic maps were used to identify similar regions

before the calibrated parameters were assigned. The

details of the calibration process are described by

Tachikawa et al. (2001).

In this study, simulation results are compared with

the observed discharges at Suiping, Wangjiaba and

Bengbu (Fig. 6), the corresponding contributing areas

being 2093; 29,844; and 132,350 km2, respectively.
3. Experimental hydro-meteorological input data

3.1. Input data source

Grid precipitation and grid actual evapo-transpira-

tion data, for the period of May 1st, 1998 to August
31st, 1998 are the forcing input data to the

hydrological model. Experimental forcing data were

created from two data sets, namely the HUBEX-IOP

EEWB dataset and the GAME re-analysis dataset.

The HUBEX-IOP EEWB data (abbreviated from the

“Huaihe River Basin Experiment—Intensive obser-

vation period—Estimation of Energy and Water

Budget” termed ‘EEWB data’ here-after) have

5-min spatial resolution and 1-h temporal resolution

(Kozan et al., 2001). The precipitation field of the

EEWB data is generated from ground-based obser-

vation using a time and space interpolation technique.

The evapo-transpiration field is the output of a simple

biosphere with urban canopy (SIBUC) model

(Tanaka, 1998). In an earlier study, the EEWB data

did not produce good results for discharge simulation

in the Bengbu basin (Tachikawa et al., 2002), the

largest basin of this study, while the results for the

smaller sub-basins were good.

The GAME (GEWEX Asia Monsoon Experiment)

Re-analysis data (Version 1.1) with 1.25-degree

spatial and 6-h time resolutions (termed as “GAME

data” here-after) is another data set used in this

experiment (JMA 2000). These data were produced

using a 4DDA system in a co-operative study of the

Japan Meteorological Agency (JMA), and the Earth

Observation Research Center (EORC), NASDA.

Using the GAME data, the river discharges in the

three study basins were successfully simulated by

Shrestha et al. (2002), which yielded a better

simulation result than the EEWB data used by

Tachikawa et al. (2002) for the large basin but did

not yield a better simulation result for the smaller two

sub-basins.

3.2. Generation of experimental forcing data

Possible errors in the magnitude of the EEWB data,

especially in the evapo-transpiration field over the

grid-cell system, may be one of the reasons behind the

simulation error for the large basin. The coarser

resolution of the GAME data was suspected to be the

dominant reason for simulation error in the two

smaller basins (this is proved true by the results

presented in this paper). Hence, an alternate data set is

needed to investigate the effect of forcing data

resolution, one that overcomes the weaknesses of

both of the two available data sets. To acquire an
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experimental data set with a 10-min spatial resolution,

the GAME data are converted according to the spatial

pattern of the EEWB data such that the resulting

experimental 10-min data set preserves the spatial

pattern of the EEWB data and the magnitudes of the

precipitation and evapo-transpiration of the GAME

data. The reason behind adopting the spatial pattern of

the EEWB data is that the EEWB data are basically

ground-based data, which take into account both the

distance and the direction of each ground observation

station. Also, the EEWB data are the finest resolution

data among the available distributed data for the study

basin. Therefore, these data are assumed to represent

the spatial pattern better than any other data. The

reason behind adopting the magnitudes of the

precipitation and evapo-transpiration of the GAME

data is that they have produced a good fit of the

observed basin-scale discharge, showing their better

accuracy in describing the water balance (Shrestha

et al., 2002). The temporal scale (6-h time resolution)

of the GAME data is adopted for the experimental

data.

Various methods may be adapted to transfer the

spatial pattern from one data set to another, in this

case from EEWB to GAME data. The spatial pattern

of the precipitation and evapo-transpiration of the

EEWB data is considered in terms of a fluctuation

from its mean value over the corresponding spatial

domain of a single grid cell of the GAME data, as

shown in Eqs. (8) and (9):
Fig. 7. Typical example of spatial patterns of exper
P4j Z
P1j CP2j KP3j if ðP1j CP2j KP3jÞR0

0 otherwise

(

For time j Z 1; 2; 3;.;m ð8Þ

P5j Z P4j

P
P1jP
P4j

For time j Z 1; 2; 3;.;m (9)

Here, the P4j are intermediate newly created

experimental 10-min data. The P1j are the GAME

1.25-degree data; the P2j are the EEWB 10 min data;

and the P3j are the average of EEWB 10-min data at

1.25-degree resolution, all of them have the same unit

of intensity per unit area. Sometimes, the P4j values

may appear negative, but are forced by Eq. (8) to

become zero. The accumulated value of the exper-

imental data inside the catchment frequently appears

to be slightly different from the accumulated value of

the original GAME1.25 data due to forcing the

negative P4j values to become zero. Hence, in Eq.

(9), a scaling factor of the ratio between the new

accumulated value and the accumulated value of the

original GAME1.25 data is applied to all the P4j data

value to ensure that the total accumulated input of P5j

values is the same as that of the original GAME1.25

data. Thus the P5j are the final experimental input data

(Fig. 7). Fig. 7 also shows a typical spatial pattern of

rainfall intensity for the 1.25-degree GAME reana-

lysis data. It can be seen that the rainfall intensities for

the experimental 10-min dataset are higher and more
imental data (P5j) and GAME1.25 data (P1j).



Table 1

Comparison of performance indices using different forcing data

Pearson MC coeff. Nash Sutcliffe coeff. Index of agreement

E G Exp E G Exp E G Exp

Suiping 0.727 0.456 0.722 0.516 0.190 0.493 0.828 0.582 0.835

Wangjiaba 0.911 0.761 0.881 0.635 0.465 0.693 0.893 0.802 0.931

Bengbu 0.677 0.729 0.759 K0.031 0.433 0.441 0.692 0.851 0.866

Average 0.772 0.648 0.787 0.373 0.363 0.543 0.804 0.745 0.877

Note: E: EEWB 10-min data; G: GAME 1.25-deg data; Exp: experimental data.
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localized. The hydrologic response of a small

catchment to these two rainfall fields will be different,

as demonstrated later in this paper.

The experimental 10-min data set is used further to

create 20-min, and 30-min data sets, etc., by passing a

spatially averaging window of (2!2), (3!3), etc., up

to 150-min (2.5-degrees), respectively. The total

accumulated value of the input data is kept constant.
Fig. 8. Simulated hydrographs at Bengbu (132,350 km2) obtained

from various input data resolutions.
4. Discharge simulation results

The experimental data and the EEWB data, both of

10-min spatial resolution, and the GAME 1.25-degree

were fed into the MaScOD model to simulate

discharge in all three-study basins: Suiping

(2093 km2), Wangjiaba (29,844 km2) and Bengbu

(132,350 km2). Four performance indices (a) the

Pearson moment correlation coefficient (PMC), (b)

the Nash-Sutcliffe coefficient of efficiency (NSI)

(Nash and Sutcliffe, 1970), (c) the Index of agreement

(IOA) (Willmott, 1981) and (d) root mean square error

(RMSE) were used to evaluate the model perform-

ances by comparing the simulated and observed

discharges. Eqs (10)–(13) describe the evaluation

criteria

PMC Z

PN
iZ1ðOi K �OÞðPi��PÞPN

iZ1ðOi K �OÞ2
� 0:5 PN

iZ1ðPi K �PÞ2
� 0:5

(10)

NSI Z 1:0 K

PN
iZ1ðOi KPiÞ

2PN
iZ1ðOi K �OÞ2

(11)

IOA Z 1:0 K

PN
iZ1ðOi KPiÞ

2PN
iZ1ðjPi K �OjC jOi K �OjÞ2

(12)
RMSE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
iZ1ðOi KPiÞ

2

N

s
(13)

Here, Oi represents observed value at the ith time;

Pi represents simulated value at the ith time; N is the

total number of observations/simulations; �O and �P are

the mean values of Oi and Pi, respectively. The best

condition is that Eqs. (10)–(12) yield a value of unity,

and that the RMSE is zero.

In terms of the IOA values shown in Table 1, the

simulation results from the experimental (P5j) data are

found to be better than the corresponding results from

both the original EEWB and GAME data sets for all

three basins (Tachikawa et al., 2002; Shrestha et al.,

2002). The NSI and PMC results were also quite

favorable. The experimental data are then used as the

base-line data and to prepare the input data of various

resolutions.

The hydrograph of simulated discharge changes as

the input data resolution changes (Fig. 8). Coarser

resolution input data, which is just a set of spatially

averaged values, yielded different simulation results



Fig. 9. The simulation band for hydrographs at (a) Suiping

(2093 km2), (b) Wangjiaba (29,844 km2), and (c) Bengbu

(132,350 km2) produced by overlapping the hydrographs obtained

from different resolutions of input data yields. It can be seen that the

finest resolution data is not necessarily the best.
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than finer resolution input data in all three basins. This

is solely due to the effect of spatial variability.

Overlapping simulation results obtained from

various input data resolutions, yields a band of

simulated hydrographs. Wide bands of simulated

hydrographs (Fig. 9) show that there is high sensitivity

to input data resolution in all three study catchments.

The hydrograph obtained from the finest resolution

input data is closest to the observed hydrograph for

the smallest catchment (Fig. 9(a)); however, for the

larger catchments (Fig. 9(b) and (c)), the hydrographs

obtained from the finest resolution input data are not

the best ones.

Fig. 10 shows accumulated discharge for the three

study catchments. The bandwidth of accumulated

discharge diverges more in the case of the smaller

basin than for the larger basins, which might be due

to a lower capacity of the smaller basin to store

soil-water within the catchment compared to that of

the larger basins. Despite the presence of significant
Fig. 10. Cumulative runoff for various input data resolutions (a) at

Suiping (2093 km2 (b) at Bengbu (132,350 km2); the smaller

catchment has the larger difference in accumulated discharge.



Fig. 11. Deviation of simulated discharge due to change in

resolution of input data (a) at Suiping (2,093 km2), (b) at Wangjiaba

(29,844 km2), (c) at Bengbu (132,350 km2).
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mismatches between the simulated and observed

hydrograph (Fig. 8), the accumulated values of the

simulated and observed discharge at Bengbu

(Fig. 10(b)) match well. This indicates that the

model has preserved the basin outflow volumes. The

mismatch in hydrographs and good match in

accumulated discharge could have occurred due to

changes in the runoff processes induced by human

activities, e.g. irrigating large paddy fields or flow

regulation at the hydraulic control structures and

reservoirs that exist within the study basins.

The effects of forcing input data resolution on the

distributed hydrological modeling are shown in

Fig. 11. In which, the discharges simulated by various

resolution input data are compared with the discharge

simulation by 10-min resolution. Using coarse

resolution input data can give very different runoff

to that obtained using fine resolution input data,

especially for the smallest catchment. The hydrograph

peaks are particularly affected. This shows that

resolution issues need more careful consideration in

high flow simulation than in low flow simulation.
5. Model performance in terms of the IC-ratio

The components of flow processes, being functions

of the detailed geometry of flow pathways in different

catchments, are difficult to compare (Beven, 2002).

Some indices, for example average slope, flow

lengths, watershed relief, etc. represent various

catchment features but they may not be suitable for

testing against forcing data resolutions and scale

issues over different catchments since these values are

highly variable from one catchment to another. A

wide range of responses may be obtained when using

these indices to investigate scale issues. Size of

catchment is probably the only absolute statistic

providing consistent information and a sound basis for

investigating suitable resolution for hydrologic mod-

eling. The ratio of the input forcing resolution to

catchment size, called the IC-ratio (Shrestha et al.,

2002), may therefore prove to be a useful index for

investigating the effects of input data resolution on

discharge.

The finest spatial resolution adopted in this

experiment is 10-min (approximately 13.5 km in

each direction at 338N, or 175 km2). The input data



Fig. 13. Model performance versus IC-ratio for four indices.
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for the Suiping basin (2093 km2) varies from 10-min

to 2.5-degree resolution. Therefore, the IC-ratio value

ranges from about 1:12 to 1:0.05. Model performance

is found to be consistently better at 1:12 than near

1:0.05. The convention of the ratio is to keep the

numerator equal to one, such that a higher denomi-

nator value (called a higher IC-ratio) corresponds to

finer resolution and a lower denominator value (called

a lower IC-ratio) corresponds to a coarser resolution

of input for a given catchment. The IC-ratio values for

the Wangjiaba basin (29,844 km2) and the Bengbu

basin (132,350 km2) vary from 1:168 to 1:0.75 and

1:745 to 1:3.3, respectively, within the framework of

this experiment.

Concise information on the changes in the model

performance in response to the altered resolution of

forcing data can be represented, as in Fig. 12, using

the IC-ratio index. This facilitates the comparison of

the responses at various scales of catchment size. In

this figure, the Pearson moment correlation coefficient

(the PMC of Eq. (3)) between the observed and

simulated hydrographs is used as the performance

index. The figure shows that the smallest basin

(Suiping) has higher sensitivity in response to the

forcing data resolution, as the steepness of the

performance versus IC-ratio curve is highest for that

case. A similar sensitivity is displayed in Fig. 11. In

the small basin, the simulation results deteriorate

faster as the input resolution becomes coarser. Model

performance improvement with finer resolution input
Fig. 12. Model performances versus IC-ratio for the three

catchments.
data has a tendency to level off. At the higher IC-ratio

values, the improvement rates of the model perform-

ances are not very significant.

The four model performance indices are evaluated

and plotted against the IC-ratio in Fig. 13. Since the

IC-ratio is a dimensionless number, the performance

indices in Fig. 13 are not separated for different basins

but are plotted as an overall trend line for each index.

The Pearson moment correlation coefficient, the Nash

Sutcliffe coefficients and the index of agreement all

follow similar trend lines, which indicate a faster rate

of performance improvement in the lower IC-ratio

range. As the IC-ratio increases, the rate of

improvement in performance gradually reduces and

the value of model performance indicator levels off to

a constant value. In contrast, the trend of the RMSE

followed a converging path toward constant values at

both ends of the IC-ratio range. The results obtained in

this experiment are satisfactory while the IC-ratio

remains above 1:10. All the performance indices are

found to level off above the IC-ratio 1:20 and the

performance improvement beyond that are likewise

un-attractive. Poorer performance index values below

the IC-ratio 1:10 suggest that if there are less than 10

input grid cells over the basin, the distributed model

does not yield good results. This is more critical in the

case of smaller basins.
6. Selection of input grid resolution

Although most modelers are well aware that an

appropriate resolution of input data may differ from an

appropriate resolution of model disaggregation, it is



Fig. 14. Trade-off between model performance and model cost with

respect to scale in terms of the IC-ratio.
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generally preferred, for convenience in the simulation

exercise, to keep the input data grid resolution the

same as that of the grid resolution of the model. In

numerical modeling, a finer-resolution model can

accept a coarser-resolution input data by splitting up

the input data in proportion to the grid size of the

model. However, a coarser-resolution model cannot

be easily devised to take a finer-resolution input data

without losing the data properties. This limitation

becomes a dictating factor in selecting the modeling

framework while the needed input resolution is finer

than the resolution opted for the distributed hydro-

logical modeling.

A finer-resolution input data is preferred for its

better description of spatial variability. It may be

impractical effort to include every details of input

field in catchment-scale modeling, especially in the

case of large and scarce-information catchments. This

leads to the option of looking for a homogenous area,

which may still preserve the representative character-

istics of the larger heterogeneous input data field.

However, this introduces a confusion relating to the

scaling problem because it is not easy to predict the

largest input resolution that is capable of preserving

the average hydrologic response characteristics of the

large regional heterogeneity of the input data field.

The results obtained in this study indicate that,

while the response to input resolution change is not

same in all basins, they are however quite similar that

the size of the largest homogenous region of input

data field depends upon the catchments size. Looking

toward a higher degree of input disaggregation, there

is initially a tendency to yield better results always,

but too much disaggregation fails to improve the

performance much. With respect to a further increase

in resolution, little improvement can be achieved once

it crosses the resolution corresponding to the IC-ratio

1:20. For example, the model performance is almost

the same at ratios 1:20 and 1:200, but the later case

needs to bear the cost of having to acquire high-

resolution data. The slight improvement in results

obtained by using higher resolution data is usually

such as to discourage choosing a high-resolution data.

The characteristic relationship between model

performance and scale is represented qualitatively

by the performance curve in Fig. 14. The relationship

between the cost and scale in Fig. 14 is difficult to

determine mainly because the conditions of one basin
differ from those of another. However, the cost is

likely to increase geometrically upon for an arithmetic

increase in resolution. The cost curve shown in Fig. 14

indicates the higher cost associated with finer

resolution scales (or higher IC-ratio). Even though a

quantitative cost analysis is not conducted in this

study, the optimum performance range can be

appreciated simply by observing the performance

versus IC-ratio curve in Fig. 13, bearing in mind the

cost considerations shown in Fig. 14

In an un-gauged basin, where a hydrologist needs to

start work from a very low base-line, a lot of unknowns

are expected to be encountered in the process of setting

up the hydrological model. The needs for spatially

distributed data with sufficient accuracy and resolution

scale, as demanded by a distributed hydrologic model,

hinders the modeler right from the start of the exercise.

Being able to select an appropriate input data

resolution, as a function of the catchment area in

terms of IC-ratio, may help designing the modeling

work. A useful range of IC-ratio values that provides a

satisfactory simulation result is noticed to be within

1:10 to 1:20. Larger catchments may be modeled

successfully at coarser scale by representing its larger

heterogeneous input data field as homogenous units but

smaller catchments need finer scales, which the IC-

ratio tends to quantify. Model sensitivity to the

discretization scales of input data exists up to an

upper limit of the IC-ratio with constant parameter

values for the selected hydrological/routing model

structure. This distinction is likely to be very useful in

setting up a model framework for an ungauged basin.
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The model resolution was kept constant at 10-min

for this study, in order to consider the effects of input

data resolution in isolation from other modeling

issues. While a resolution of 10-min is required to

model the smallest catchment considered here, the

effort required to set up a distributed model at this

resolution may not be justified for larger catchments,

particularly if an input data resolution coarser than 10-

min is selected based on the proposed IC-ratio rule. If

this is the case, and provided that the river network

and hydrological processes can be adequately mod-

eled at the coarser resolution, the hydrological

model’s spatial resolution could be chosen to match

the resolution of the hydro-meteorological input data.
7. Conclusions

The performance of a macro-scale distributed

hydrological model depends upon the quality of the

model, the selected model parameters, and the quality

of the input data. The quality of the input data set is

associated with accuracy and resolution issues. The

ratio of input data resolution to the catchment area,

called the IC-ratio (Shrestha et al., 2002), can serve as

a useful index to evaluate the suitability of data and

choose a model resolution for distributed hydrological

modeling.

In this study, three catchments, ranging from small

(2093 km2) to large (132,350 km2) size, were used to

investigate the effects of data resolution on the

discharge simulation results. The two smaller catch-

ments were found to be more sensitive to data

resolution than the larger one, indicating that

resolution issues need more attention for smaller

basins, and that model performance depends upon the

input data resolution. However, demanding very high-

resolution data is not a sensible or practical solution in

response to this. The minimum amount of input data,

the minimum number of parameters, and the

minimum computational load which produce reason-

able simulation results, make the distributed hydro-

logical model easier to apply and more cost-effective.

We find that an IC-ratio of 1:10–1:20 gives overall

optimum performance of a macro-scale distributed

hydrological model, bearing in mind the effort

required to process high resolution data for an

ungauged basin. An IC ratio in this range gives
a sensible balance of accuracy, cost, time, and

complexity.

Our recommendation of an IC ratio in the range of

1:10–1:20 implies that the distributed modeler should

obtain hydro-meteorological input data at a scale

such that about 10–20 pixels are sufficient to cover

the catchment. We certainly would not recommend

an IC ratio of less than 1:6, i.e. using less than six

input data pixels to model a catchment. This has

implications for the minimum size of ungauged

catchment that can be successfully modeled by a

distributed model. The finest spatial resolution of

hydro-meteorological input data that was obtained

for this study was 10-min data, giving a pixel

covering approximately 175 km2 at 338N. This

required a substantial amount of processing and

cross-checking of the quality of the data, based on

both the 1.258 GAME-IOP reanalysis dataset that

covers the Asian Monsoon region (JMA 2000), and

the poorer-quality 5-min HUBEX-IOP EEWB data-

set that covers the Huaihe River Basin in China

(Kozan et al., 2001). Thus good quality regional

hydro-meteorological datasets at resolutions of 10-

min or finer are difficult to obtain. This, along with

our recommended range for the IC-ratio, implies that

the use of hydro-meteorological datasets to model

ungauged catchments may be difficult for catchments

much smaller than 1700 km2. The ease with which

appropriate data can be obtained improves as the

catchment size increases. However, future improve-

ments in resolution and accuracy of the outputs of the

atmospheric models used for regional data reanalysis

will improve this situation.

In our effort to establish a preliminary data

resolution criterion (i.e. the proposed IC-ratio Rule)

for modeling an ungauged basin, which would

indicate at least an approximation of the data

requirements, and to highlight the necessity of

considering catchment area for setting an objective

grid resolution of re-analyzed data at the regional

scale, we focused in this study on the trade-off

between data density and the efforts needed in

hydrological modeling. We appreciate that our case

for the IC-ratio Rule could be strengthened and

refined by considering more sub-basins of the Huaihe

River basin and also that the applicability of the rule

could usefully be tested using a gauged sub-basin as
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a control. It is our intention to address these

considerations in a later phase of this research.
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