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L This study proposes a lumping method for a physically-based distributed

' sediment runoff model. A distributed-lumped model obtained by the lumping
method enables to predict flood and sediment yield on a real-time basis

' by considering hydrological and transport processes. First, model lumping

[ of distributed kinematic wave rainfall runoff and erosion sediment transport
equations is developed, which is the integration processes of spatially
distributed equations assigned to each grid-cell over landscape. Then, lumped
discrete relations between the variables, namely a stream discharge and a
maximum sediment storage capacity is produced as-a function of stored water

{ volume in the catchment. Stream flow and sediment yield are predicted by
using these discrete time-invariant relations and lumped continuity equations.
The performance of distributed-lumped model was confirmed from the case
study the Lesti River catchment, Indonesia.

1. Introduction

The Brantas River, 320 km length with 39 tributaries and a catchment area
[ about 11,800 km?2, is the second largest river located in East Java. The Lesti
River catchment (351.3 km?), a tributary catchment in the Upper Brantas
River basin is selected as study area. At the confluence point of the Lesti
{ River and the Brantas main reach, the Sengguruh dam was constructed
in 1988 for water resources and hydropower generation. Its original gross
storage in 1989 was 22.4 million m® and reduced to 5.5 million m® in 1993.
Unexpectedly, most of the gross storage has been already filled with the
large amount of sedimentation from the Lesti River.! In order to protect the
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280 Apip et al.
capacity of the reservoir and manage water resources from sedimentation
caused by flood events, it is necessary to predict water and sediment inflows
to the reservoir.

Many complex distributed models have been developed to understand
the spatial dynamic sediment yield and transportation at the catchment
scale. A physically-based distributed sediment runoff model considers
multiple sources of sediment transport, namely soil detachment by
raindrops and soil detachment by overland flow developed by the authors.?
However, the direct applications of the model to the real-time food
and sediment yield predictions are still limited because of the high
computational requirement especially when stochastic algorithms are
included. Thus, the model originated from a physically meaningful model
structure and parameter with less computational requirement has a great
potential to be used to the real-time flood and sediment predictions
on coping with predictive uncertainty. It due to the most of proposed
uncertainty assessment approaches conduct Monte Carlo type simulations
with long time-consuming process.

One of the potential ways to step forward and overcome the
high computational burden is by structural lumping of physically-based
distributed models as pointed out by various researchers.3* The lumping
kinematic wave equation of a physically-based distributed sediment runoff
model is addressed in the study. This paper focuses on (1) proposing a new
method to lump a physically-based distributed sediment runoff model at
the catchment scale and (2) subsequently constructing a distributed-lumped
model as a new type of lumped sediment runoff model which preserves the
physical meaning of the hydrologic and sediment transport processes. The
paper describes the overall model structures and the lumping method, as
well the reliable application of the model at the Lesti River catchment,
Indonesia. Mathematical formulation of the physically-based distributed
sediment runoff model and its distributed-lumped version are provided
following section.

2. Physically-Based Distributed Sediment Runoff Model

The hydrological model® considers three principal water flux pathways
within a catchment: subsurface flow through unsaturated fow (capillary
pore), subsurface flow through saturated flow (non-capillary pore), and
surface overland flow. Based on stage-discharge relationship,® after the
water depth is greater than the surface soil layer, the net rainfall will
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accumulate as surface water and begin to flow as overland flow. Subsurface
and surface flows in both land surface and river channel networks are
computed as one-dimensional kinematic wave equation. In a given rainfall
event, rainfall is directly added to subsurface or surface flow according to
the water depth, depending on the rainfall occurring in a grid-cell.

The stage-discharge, ¢ — h, relation for both surface and subsurface
flows:

vmdm(h/dm)ﬁ, 0 < h < dm
q=1 Vmdm + V(b —d), dm <h<dq (1)
Vmlm + V(b — dm) +a(h —da)™, da <h

Um = kmt, Va = kai, km =ka/0, a:\/%/n

where ¢ is discharge per unit width, % is water depth, i is the slope gradient,
k. is the saturated hydraulic conductivity of the capillary soil layer, kq is
the hydraulic conductivity of the non-capillary soil layer, d;, is the depth
of the capillary soil layer, d, represents the depths of the capillary and
non-capillary soil layers, 3 is the exponent constant of unsaturated flow,
vm and v, are the flow velocities of unsaturated and saturated subsurface
flows, respectively, and n is the roughness coefficient based on the land
cover classes.

A sediment transport algorithm was newly added to the hydrological
model. Soil erosion and deposition are described in terms of processes
occurring on hillslopes. The sediment transport algorithm includes multiple
sources of sediment transport, namely soil detachment by raindrops (d)
and soil detachment or deposition driven by overland flow (dy).

Soil detachment by raindrops is given by an empirical equation in which
the rate is proportional to the kinetic energy of effective rainfall. From
observation of rainfall characteristics in the study area,” d, is given as

dy=pkke=pk5648 r (2)

where i is the soil erodibility, & is a tuning parameter, ke is the total kinetic
energy of the rainfall, and r is the rainfall intensity.

The concept of sediment transport capacity was used to determine soil
detachment or deposition by overland flow. Sediment transport capacity of
overland flow is defined as the maximum value of sediment concentration
to transport; dy represents the sediment yield by surface flow shear stress®:

df = CY(Tc - C)hs (3)
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where « is the detachment/deposition efficiency factor, h, is the overland
flow depth, and 7, is the maximum sediment concentration transport
capacity. Following the T, value, if the current sediment concentration
c is lower than this capacity, erosion occurs; otherwise an excess of soil
deposition exists.

The transportation capacity was calculated based on the unit stream
power theory that can be applied for sediment transport in open channels
and surface land erosion.? Hence 7. is estimated as

Te =loge, = I+ J1og((vi — veritical ©)/w) (4)

where v 1 is the unit stream power (where v is the flow velocity ands is the
slope gradient), ceriticalx? is the critical unit stream power (veriticar is the
critical flow velocity), w is the sediment fall velocity calculated by Rubey’s
equation, as well I and J are the dimensionless parameters.

The catchment is divided into an orthogonal matrix of square grid-
cells (i.e. 250m x 250m), assumed to represent homogeneous conditions
according to the digital elevation model (DEM). This allows the use of
DEM to derive flow direction map to define the interaction between the
objects which simulate sediment runoff at each grid-cell. Runoff generation,
soil erosion or deposition are computed for each grid-cell and are routed
between grid-cells using the kinematic wave model following the water flow
direction, which defines the routine order for the water flow and sediment
transport propagation.

The physically-based distributed sediment runoff model is a suitable
tool allowing for the simulation and investigation of hydrological process,
sources of erosion and deposition within internal location of the catchment
(Fig. 1).

3. Distributed-Lumped Sediment Runoff Model Derived
from the Lumping Method

A method to lump a physically-based distributed rainfall runoff model* was
used and extended for erosion and sediment transport model. The lumping
method has been developed to produce a distributed-lumped model as a
new type of lumped sediment runoff model version. The original distributed
model is used to derive a lumped relation between water storage volume,
discharge, and maximum sediment storage of the catchment by considering
spatial distribution of topographic variables, water content, and sediment
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Fig. 1. Spatial distribution of erosion and deposition sources for internal location of the
catchment after rainfall event on September 13—15, 2004 at the study site.

concentration transport capacity. The method proves that lumped version
is derived from the distributed version. The objective of the development is
not only to improve the computational efficiency but more importantly to
construct a lumped formulation of the hydrologic and sediment transport
equations at catchment scale by keeping the physical meaning of the
distributed model. All the represented dominant processes are preserved
in the lumping procedures.

The fundamental assumption of the lumping method is that the rainfall
runoff process of the catchment system reaches the steady state condition
with spatially uniform rainfall input. From this assumption, discharge flux
can be expressed as the product of rainfall intensity and the upslope
contributing areas. Then, the relation between total stored water and the
outflow discharge in each grid cell is theoretically derived by integration
processes of spatially distributed equations assigned to each grid cell over
the landscape:

i

o(@) = q(0)/w + / (2) do =1 Ujw + ra (5)

where U is the upslope contributing area, x is the horizontal distance from
the upstream end of a grid cell, and w is the width of the grid cell.
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The stored water volume of a grid cell, s, is given as

L

s = wo/h(a:) de (6) ‘

where L is the horizontal distance at the downstream end of a grid cell.
By substituting the variable of integration from z to ¢ using the relation i
given by Eq. (5), Eq. (6) becomes

q(L)

w w
5= [ #a) da = 2{Fa(L) - Fa)] (")

q(0)
It is assumed that ¢ is a function of A and can be analytically integrated
with h. If the value of g is known from Eq. (5), and & is numerically obtained i
using Eq. (1), then F(g(x)) can be calculated.'®

The stored water at the catchment scale, Sy, can be calculated by
summing the s from each grid cell as follows:

N
Sy = Z 84 (8)

where IV is the total number of grid cells for a whole catchment. Finally, ¢
at the outlet is linked to S, as a function of the topographic and physical
characteristics of each grid cell, as well as effective rainfall intensity.

The sediment transport process is affected by the dynamic spatial
distribution of overland flow. For lumped representation of the catchment, i
soil detachment or redeposition depends on the balance between the current
sediment concentration and maximum sediment storage capacity. The
maximum sediment storage variable is produced from lumping distributed i
erosion-sediment transport equations as

N
2 (Tesws);
s = S ) ;

where s,5 is the surface water stored in each grid cell if A > d,. Variable
T, is then calculated using Eq. (6). According to the relation between the
current sediment storage, Ss, and S, for each time-step calculation, the
value of ¢ from the hillslope area can be solved by

S
Sws

(10)
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Fig. 2. Schematic diagram of the procedures to develop a distributed-lumped sediment
runoff model based on the lumping method.

where Sy, is the total stored water surface of the catchment. For each time-
step calculation, ¢ is assumed to be uniform over the catchment and is the
variable of lumped continuity.

In brief, the procedures to develop the distributed-lumped sediment
runoff model version (see Fig. 2) may be summarized as follows:

1. Based on the original distributed equations and their physically
meaningful parameterization, lumping process of the distributed model
is done by spatially integrating kinematic wave runoff and sediment
transport equations for each grid-cell over the entire catchment system.

2. Obtain the lumped discrete relations between the variables, namely the

stream discharge, the total water stored amount, and the maximum

sediment storage capacity. It may be conducted by spatially distributed
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information on land use, soil properties, geomorphology and topology, as
well for k sets of different synthetic rainfall intensity (i.e. from 1, 2,...to
500 mm/hr). Finally, it prepares the lumped relations in the “look-up”
table form, which is time-invariant values and considered as parameters
of the lumped model. Thus the innovative aspect of this method is these
lumped model parameters (Fig. 3) can be derived directly from the
distributed model without adding any calibration or parameterization.
This feature can solves the major disadvantage of traditional lumped
models, which lacks physical background of the parameters.

3. Streamflow and sediment concentration are predicted and updated using
lumped continuity equations and real rainfall intensity. They related
to each of discrete relations which summarized in the “look-up” table.
Lumping of original distributed model leads to transforming the water
flow and suspended sediment transport routing processes into a cascade
of non-linear reservoirs represents the cacthment as a whole of the form
as shown in Fig. 4. It transforming kinematic wave routing process into
storage routing process as lumped continuity equations.

4. Model Evaluation and Discussions

The sediment runoff models both the distributed and lumped have been
applied to the Lesti River catchment shown in Fig. 5. The parameter
values of the original distributed model version: roughness coefficient n
(0.001~0.3 m~'/3s); depth of capillary and non-capillary soil layer d,
(0.08-1.2 m); depth of the capillary soil layer d,, (0.04-0.8 m); hydraulic
conductivity of the non-capillary soil layer K, (0.015 m/sec); exponent
constant of unsaturated flow § (8); median of grain size D5 (0.062 mm); soil
detachability & (0.004 kg/J); and detachment/deposition efficiency factor
a (0.98).

Figures 6 shows a comparison between the values of simulated
streamflow and sediment concentration at the outlet (Tawangrejeni station)
for two scenarios of soil thickness with the same rainfall intensity and total
depth calculated through the distributed and the lumped models. The
evaluation results suggest that in the case when soil thickness is shallow
(Case 1), the discrepancy of estimated values for both the streamflow and
sediment concentration by the lumped and distributed models is generally
less than that of the case the soil is thicker (Case 2).

_ -

Outflow Discharge, Q (m‘/sec)
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Capacity (kg/m%/hr)
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Pig. 4. Conceptual scheme of the new lumped sediment runoff model structure.

The difference increases with the soil thickness, where the lumped
model results generally have a tendency to underestimate streamflow and
sediment concentration at the rising limb, and over estimate at the falling
limb of hydrograph and sedimentgraph. This difference is due to the
assumed steady state condition in deriving the lumped model. In Case 2,
at the beginning time of event, the catchment system does not reach a
steady state yet, rainfall stored in the soil layer flows is rather slow, and
therefore streamflow is insensitive to rainfall intensity. Afterwards, the soil
layers are easily saturated and once the water depth at the most area of
catchment exceeds the capacity of the capillary soil layer, streamflow rises
up suddenly. This implies it was not correct for the event to assume the
steady state condition at the beginning of the simulation in Case 2. Thus
the second discrete relation of Q — Sy for the lumped model shows some
difference from the distributed one. Another possible reason is that in the
distributed model, the setting of initial conditions causing some parts of the
catchment are already saturated (i.e. river channel area) and overland flow
happens thus the rising limb of the hydrograph is faster than the lumped
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Fig. 5. (a) Lesti River catchment: river system, catchment boundary, and rainfall
observation sites; and (b) its flow direction map.
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Table 1. Simulated cumulative streamflow and sediment concentration for two
simulation cases.

Variables Cases  Distributed model Lumped model Difference (%)

Runoff (m?) Case 1 2724.20 2776.63 1.56
Case 2 2192.48 2293.90 4.63

Sediment yield (kg) Case 1 1517.05 1548.86 2.10
Case 2 856.45 909.13 6.15

one. On the contrary, the capacity of non-capillary layer d, —d,,, in Case 1 is
smaller as compared to Case 2. The catchment system rises up to dynamic
steady state condition, and lumped model results show better performance
belonging to the original distributed model than in Case 2.

The above experiments showed that the lumped model version,
structured according to the proposed lumping method, produces acceptable
results. Within the range of possible soil depths, the difference is small and
does not cause severe problems for the application. In addition, the lumped
model successfully reduced the computational burden. Simulation time of
the lumped model was about 1/37 of that of the original distributed model.
Table 1 summarizes the differences in cumulative total runoff and sediment
yield calculated by lumped and distributed models, which are all lower
than 7%.

Figure 7 plots computed streamflow discharges and sediment
concentrations by the lumped model compared to the observed data. The
simulation results of the lumped model shows good agreement with the
observed one. '

5. Conclusions

The Lumping method of a physically-based distributed sediment runoff
model has been developed. The advantage of the method is that the
lumped model preserves hydrological and sediment transport processes,
as well the model parameters derived from the original distributed model
does not require additional calibration. From the case study in Indonesian
river catchment, we confirmed both distributed model and the newly
developed lumped model can indicate the reliable application compared
to the observed streamflow discharge and sediment concentration. The
discrepancy between the two models increases as the soil layer becomes




Apip et al.

Rainfall
(mm/hr)

Py
NODWwo

— =8im. discharge by distributed

60 = Obs.discharge 4 12000
Sim. discharge by lumped
— - - Sim. sediment con. by distributed
50 T /A A Obs.sedimentcon, 1 10000 ¢
g '} Sim. sediment con. by lumped 2
3 . z
a2 40 F AN 1 8000 o
E " TN =
g D ] ©
s -f\\ 2
e
« | » i @
£ 30 " J\.\\ /J 6000 8
o . N 2
2 20 } 1 4000 G
£ £
g 3
2000 @
0

Time (hr)

Fig. 7. Event sediment runoff observation and simulation at the catchment outlet
in 2003.

thicker, rainfall amount decreases, and the spatial-temporal variability of
input rainfall intensity become more significant. These are mainly due to the
steady state assumption that lies under the lumping method. The proposed
distributed-lumped sediment runoff model is an effective way, particularly
for the practical applications on the real-time basis in combination with
stochastic analyses.
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