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ABSTRACT

The finite-difference method offers advantage in terms of simplicity of discretization and has been widely
used for simulating saturated—unsaturated flow. However, geometrically complex flow domains have not been
expressed well by conventional finite-difference models which are basically defined on orthogonal coordinate
system. To overcome this shortcoming, a finite-difference saturated—unsaturated flow model that can treat non-
orthogonal grids using a coordinate fransformation method was presented. Picard iteration scheme is a widely
used for Richards' equation. This method is simple to implement but converges slowly. The Newton method is
comparatively complex but converges faster than the Picard method. One of our purposes in this study is
evaluating the performances of two methods for FDM using the coordinate transformation technique. Another
object is about treating cross-derivative terms. Tl he cross-derivative terms derived in the coordinate
transformation procedure are quite difficult to treat in implicit manner in practical aspect because I 9-stencil is
given in three-dimensional problens, which make the programming extremely complex. Therefore, the cross-
derivative terms are usually evaluated in explicit manner and the other terms are evaluated in implicit manner.
However, the Newton-Krylov method does not require forming I 9-stencil directly. Instead of it, it is required to
calculate the matrix-vector product which can be approximated by taking differences of the original nonlinear
function in the procedure of Newton-Krylov method. It is a major advantage of the Newton-Krylov method that
all the terms can be evaluated in implicit manner without forming 19-stencil matrix, which may give higher
convergence speed and allow larger time step than the scheme evaluating the terms in partially implicit manner-
But there is additional cost of the Newton-Krylov method for calculating the original nonlinear function at every
Krylov iteration step. In this study, the performances of the Newton method, the Picard method, which are
evaluating the equation in partially implicit manner and the Newton-Krylov method were assessed through
steady-state test problems with curvilinear flow domain.

1 INTRODUCTION

Modeling of saturated—unsaturated flow through porous media is an important research topic
and involved in various branches of water resources engineering, agricultural engineering, chemical
contaminant tracing, and rainfall-runoff modeling. Although several analytical solutions of the
governing equation of saturated—unsaturated flow through porous media have been reported
(Broadbridge & White, 1988; Hogarth & Parlange, 2000; Menziani et al. 2007; Parlange, 1972; Philip,
1957), it is found that these solutions are generally obtained under simple initial and boundary
conditions. Hence, numerical models are usually used to investigate saturated—unsaturated flow in
porous media, where analytical solutions are not appropriate. Particularly in hydrological engineering,
the saturated—unsaturated subsurface flow model are used as a tool to investigate the processes related
with new findings obtained by observation studies. For example, to more deeply understand the
hydrological processes of a hillslope including the nonequilibrium and preferential flow, the
saturated—unsaturated subsurface flow model has been widely used in many recent researches (Gerke
& Van Genuchten, 1993; Gwo et al., 1995; Jarvis, 1998, Keim et al, 2006; Kosugi et al., 2004; Liang
et al., 2009; Simunek et al., 2003). Over the past three decades, many numerical models including
finite-difference models (FDMs) and finite-element models (FEMs) have been developed for
simulating saturated—-unsaturated flow (Celia et al., 1990; Clement et al. 1994; Forsyth et al., 1995;
Jones & Woodward, 2001; Tocci et al., 1997). Other approaches such as a finite-volume approach, a
mixed finite-element approach, and an Eulerian-Lagrangian approach have also been developed for
simulating saturated—unsaturated flow (Bause et al., 2004; Farthing et al,, 2003; Huang et al., 1994;
Manzini & Ferraris, 2004). In particular, this thesis will focus on modeling of FDMs. FDMs have
certain advantages with respect to the ease of coding and understanding owing to its simplicity of
discretization as compared to the other models. However, a disadvantage of FDMs has been also
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pointed out; FDMs do not accurately represent all geometrically complex flow domains with low
resolution, especially in multidimensional simulations.

Because saturated—unsaturated flow equation systems are highly nonlinear, implicit temporal
discretization and iterative procedures are generally needed for numerical stability. The Picard and
Newton iteration methods are common approaches for modeling of the saturated—unsaturated flow.
These two methods have their own advantages and disadvantages. The Picard method is simple to
implement and cost-efficient (per iteration basis). However, it converges slowly than the Newton
method. On the other hand, the Newton method is comparatively complex to implement and consumes
more CPU resources than the Picard method. But it converges fastly. Paniconi et al. (1991) and
Paniconi & Putti (1994) compared FEMs using two iteration methods in one, two and three-
dimensional problems and assessed their performances. They showed that if initial guess at the first
iteration is good, the Newton method is more robust and converges fastly than the Picard method.
However, the Newton method is more sensitive to initial guess than the Picard method and often fails
to converge in particular problems, especially in steady-state problems. They also insisted that the
hybrid of the Picard and Newton method can overcome the disadvantages of both methods while
keeping advantages of both methods. To overcome this disadvantage, An et al. (2010) applied the
coordinate transformation method to FDM of simulating saturated-unsaturated flow. Their model
showed good performance for curvilinear flow domain and proved that FDM with the coordinate
transformation method is an attractive numerical model.

Coordinate transformation represents diffusion with cross-derivative terms. Therefore, the
transformed equation requires a 19-point stencil instead of a 7-point stencil, which is required by tee
conventional FDM with an orthogonal grid. All the terms including the cross-derivative terms are
quite difficult to treat in implicit manner in practical aspect because it makes the programming
extremely complex. Therefore, the cross-derivative terms are usually evaluated in explicit manner and
the other normal-derivative terms are evaluated in implicit manner. In this approach, the 7-point
stencil is calculated implicitly by the iterative calculation, as in the case of the conventional FDM.
However, there is another way to avoid complexity of programming besides the 7-point stencil
strategy. The Newton-Krylov method does not require forming 19-stencil matrix directly. Instead of it,
it is required to calculate the matrix-vector product which can be approximated by taking differences
of the original nonlinear function in the procedure of Newton-Krylov method. Newton-Krylov method
is combination of Newton method for linearization and Krylov subspace method for solving linearized
simultaneous equation. It is a major advantage of the Newton-Krylov method that all the terms can be
evaluated in implicit manner without forming 19-stencil matrix, which may give higher convergence
speed and allow larger time step than the scheme evaluating the terms in partially implicit manner. But
there is additional cost of the Newton-Krylov method for calculating the matrix-vector product at
every Krylov iteration step. Hence, it is expected that there is a trade-off between the Newton-Krylov
method and the 7-point stencil Newton iteration method.

Figure 1. Concept of coordinate transformation: an arbitrarily shaped mesh in physical space is
transformed into an orthogonal mesh in computational space.
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2 ITERATION METHOD

Referring to An et al. (2010), coordinate-transformed Richards’ equation from physical space,
(x,,%,,%,) =(x, y,2) , to computational space, (£,,<,,&,)=(&,1,4) as Fig 1. is written as

S-S { a‘”} 2wk =o, 0

p= i (]‘—‘l aéq p— af

where ¥ is the pressure head, 0 is the volumetric moisture content, X is the hydraulic
conductivity function of i, 7 denotes the time, G and H are defined as
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where K . is anisotropy tensor element of the hydraulic conductivity. If the diagonal entries of K

equal one and off-diagonal entries zero, it express an isotropic medium. J is the Jacobian determmant,
meaning the ratio of the control volume in the physical space to that in the computational space, and

G”? and H” represent the mesh skewness and the anisotropy tensor. The terms with p = ¢ of Eq.
(3.6) represent normal-derivative contributions and the other terms (p # ¢) represent cross-derivative
contributions. The backward Euler approximation of coordinate-transformed Richards’ equation is
written as
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where supetscripts » denotes the time level.
2.1 Newton Method
In the Newton method, all nonlinearities of equation are taken into consideration as follows:

n+l,m

noy_ W)
Sl - " =0, (4)
dy
where  f(y) is Richards’ equation, superscripts m denotes the iteration level and
w" (""" — ™Y s updating value. Nonlinearities of Richards equation is involved with the

term of O(w) and K(yv). Applying Eq. (4) to Eq.(3) gives
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2.2  Picard Method

The nonlinearities came from K () are not considered in the Picard iteration method as
follows:
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The values of K(y) are estimated at previous iteration step and their nonlinearities are not
considered in implicit manner. Comparing Eqgs. (5) and (6), it is found that the Picard method can be
viewed as an approximate the Newton method neglecting the terms involving nonlinearities of K (),
which are 6th and 7th terms of the left side of Eq.(5). It is well known that the Newton scheme
converges quadratically whereas the Picard scheme converges linearly. A comparison of these two
schemes used in FEM is well described in Lehmann, & Ackerer (1998), Paniconi et al. (1991), and |
Paniconi & Putti(1994). |
2.1 Newton-Krylov Method

The Newton-Krylov method is combination of Newton iteration method for linearization of
nonlinear system and Krylov subspace method for solving linear simultaneous equation. The link
between the two methods is the Jacobian-vector product, which can be approximated from original

nonlinear equation without estimating real Jacobian matrix. The history and details of Newton-Krylov
method are well reviewed in Knoll & Keyes (2004).

In Newton-Krylov approach, a Krylov subspace method is used to solve the linear simultaneous
equation. To solve the Eq. (4), an initial residual vector is defined as

f(l//n+l,m) _ A5¥/O — rg , (7)

where 4 is matrix of df (y)/dy , Sy’ is an initial guess of Sy , 7, is an initial residual

vector, and the time index » and iteration index m are dropped because the Krylov iteration is
performed at fixed » and m. Then, based on Krylov subspace method, the solution of Eq. (4) can be
expressed as

{1
Sy' = BE (), (8)
k=0

where superscript / denotes Krylov iteration step, and B* is scalar values determined to

minimize the residual in Generalized Minimal RESidual (GMRES) algorithm. It is found that Eq. (8)
requires the matrix 4 only in the form of matrix-vector product, which can be approximated by taking
differences of the original nonlinear function as Brown and Saad (1990) and Chan and Jackson (1984):
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where v is an vector of (A)*™ 7y, and & is scalar value much smaller than the scalar elements
of v. Eq. (9) is simply rewritten form of taking a first-order Taylor series expansion approximation of
S (W +ew). The error in this approximation is proportional to perturbation & and there are various

options for choosing the perturbation parameter (Knoll & Keyes, 2004). The following formulation
was used in this study as referring to Brown & Saad (1990):

e 0
e,

where b is a constant whose magnitude is within a few orders of magnitude of the square root
of machine roundoff, typically 107° for 64-bit double precision.

max |:|

(10)

The matrix of df (y)/dy does not required to be formed to solve nonlinear system in
Newton-Krylov approach, which is the most attractive feature of Newton-Krylov method especially
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for complex systems such as the transformed equation in this study. However, it should be also
pointed out that there might be additional cost for calculating Eq. (9) at each Krylov iteration
compared with the exact Newton iteration method, in which 4 is formed and the calculation cost for
Av is neglectable.

3 NUMERICAL SIMULATION

Three linearization schemes, the Picard method with 7-point stencil, the Newton method with 7-
point stencil and the Newton-Krylov method, are evaluated throughout test simulation. Van Genuchten
(1980)’s equation for the soil water retention curve and Mualem (1976)’s equation for the unsaturated
hydraulic conductivity function were used in this study. The sandyloam soil property referring to
Carsel & Parrish (1988) was used in test simulation.

The performances of three iteration methods for steady state problem are investigated.
Curvilinear domain with 21 x 21 x 21 mesh is considered as shown in Fig. 2. The initial condition is

w,o(z) =45 - z (m). All side boundaries are Dirichlet boundaries as v, (z) =45 - z (m) and no flux
boundaries for top and bottom. Pumping well is placed at (x = 626, y = 626) and water levels at the
well are varied as L = 10, 20, and 30 (m). Well nodes are set as ,,,(z) =L - z (m) in z < L and
seepage face boundary in z > L.

Fig. 3 describes pressure head results performed by the Newton method. The results performed
by the other two methods were very similar to Fig. 3. Table 1 lists total iteration number and CPU
time taken by three iteration methods with line search method. Fig. 4 shows the convergence behavior
of three iteration methods. The Newton-Krylov method more fastly converged than the other two
methods as expected. The Newton method converged faster than the Picard method. At first few
iterations the Newton and Picard method showed similar convergence behavior. But after few
iterations the Newton converged more drastically than the Picard method. Even though the Newton-
Krylov methods converged most fastly, the Newton method consumed least CPU resources in this test
simulation. Average CPU cost per iteration of Newton-Krylov and Newton method were 1.38 and 0.19
sec in this simulation. Comparing the Newton method, the Newton-Krylov method requires additional
cost for solving the matrix-vector product, Eq. (9), at Krylov iteration when linear equation is
calculated. In this test simulation, 70-90 Krylov iterations were required to be solved for one outer
iteration which is equivalent to the Picard or Newton iteration. This additional calculation consumed
more than 80 % of CPU resources in Newton-Krylov iteration method. In conclusion, the Newton
method was the most efficient iteration method in this test simulation. It is also found that the Picard
method is not attractive iteration method for steady-state problems compared with the Newton method.

() O

N VW Y W W W W
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%X(m)

Figure 2. Curvilinear flow domain and grid used in test, (a) perspective view; (b) plane view and circle
represents the place of pumping well

Table 1. Total iteration numbers and CPU times performed by three iteration methods.

Scheme Total iteration number CPU time (s)
L=10 L=20 L=30 L=10 L=20 L =30

Picard 342 151 83 76 30 15

Newton 36 25 21 8 5 3

Newton-Krylov 22 13 11 34 17 14

14 The Fifth APHW Conference “Hydrological Regime and Water Resources in the Conte,}ft of Climate Change”




.
.
7

.

Figure 3. Pressure head results performed by the Newton method. A cross sectional distribution
for x =626,y = 626 and z=0 m.
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Figure 4. Convergence behavior of three iteration methods; L; residual norm are plotted

4 CONCLUSION

The performances of three iteration methods, the Picard, Newton and Newton-Krylov methods,
for three-dimensional non-orthogonal finite difference model were compared. The Picard and Newton
methods implemented 7-stencil strategy in which the cross-derivative terms are e¢valuated in explicit
manner to avoid extremely complex programming and cost for forming 19-stencil matrix. On the other
hand, Newton-Krylov method considered all terms in implicit manner while saving the cost for
forming 19-stencil and avoiding complexity of coding because it requires calculating matrix-vector
product instead of directly calculating 19-stencil matrix. Theoretically, the results of the Newton-
Krylov method are the same resulted by 19-stencil exact Newton method. However there is additional
cost for calculating matrix-vector product per Krylov iteration compared with the exact Newton
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method. Steady-state pumping well problem was considered as test simulation varying problems

difficulties to compare convergence behavior of three iteration methods. The models using all three

methods solved the problems stably. The Newton-Krylov method converged more fastly than the other
two methods. However the Newton-Krylov required much more CPU resources per iteration than the

other two methods. The Picard method converged much more slowly than the other two methods. As a

result, the Newton method was most cost-efficient in out test case. This paper presented the

performances of three iteration methods for steady-state problem. Further research on the
performances of three iteration methods for unsteady-state case is ongoing.
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