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    Applications of data assimilation techniques have been widely used to improve upon the 

predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte 

Carlo (SMC) filters, known as “particle filters”, provide the capability to handle non-linear and 

non-Gaussian state-space models.  This paper proposes a dual state-parameter updating scheme (DUS) 

based on SMC methods to estimate both state and parameter variables of a hydrologic model. We 

introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. 

The applicability of the dual updating scheme is illustrated using the implementation of the storage 

function model on a middle-sized Japanese catchment. We also compare performance results of DUS 

combined with various SMC methods, such as SIR, ASIR and RPF.  
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1. INTRODUCTION 

 
Identification and minimization of uncertainty 

are key issues in the hydrologic prediction. Data 

assimilation is a way to integrate information from 

a variety of sources to improve model accuracy, 

considering the uncertainty in both the 

measurement and modeling system. Among data 

assimilation techniques, the sequential Monte Carlo 

(SMC) methods are a Bayesian learning process in 

which the propagation of all uncertainties is carried 

out by a suitable selection of randomly generated 

particles without any assumptions about the nature 

of the distributions. Unlike the various Kalman 

filter-based methods that are basically limited to the 

linear system equation and the assumption of 

Gaussian distribution errors, SMC filters have the 

advantage of being applicable to non-linear, 

non-Gaussian, state-space models. Since their 

introduction in 1993
1)

, the application of these 

powerful and versatile methods has been increasing 

in various areas, including pattern recognition, 

target tracking, financial analysis, and robotics. 

Only in recent years has the application of these 

methods been included in hydrology research
2),3),4)

. 

In the practical use of hydrologic models, 

estimated states are highly sensitive to the 

uncertainty of model parameters. Furthermore, 

there is no guarantee that parameters calibrated 

from previous data are the optimum in the current 

prediction. Therefore, updating state variables 

based on inappropriate parameters will likely 

increase uncertainty in the forecasting of hydrologic 

models. In this respect, sequential estimates of the 

parameters and state variables are needed to enable 

the model to generate accurate forecasts. 

In this paper, we propose a dual state-parameter 

updating scheme (DUS) based on the SMC filters 

for the estimation of both the state and parameter 

variables of a hydrologic model. A kernel 

smoothing method is introduced for the robust 

estimation of uncertain model parameters in the 



 

DUS. We illustrate its applicability for hydrologic 

forecasting on a middle-sized Japanese catchment 

using a conceptual hydrologic model.  

The paper is organized in the following way. 

Section 2 outlines the Bayesian filtering theory; the 

sequential Monte Carlo filters, known as particle 

filters, which are based on the sequential importance 

sampling (SIS); and parameter inference 

approaches in SMC. In Section 3, the case study 

demonstrating the applicability of the SMC filters is 

presented. The SMC filters are applied for real-time 

forecasting of river discharge of the Katsura River 

catchment using the storage function (SF) model. 

Sequential data assimilation is performed by two 

different schemes via the SMC filters: state only 

updating and dual state-parameter updating. 

Comparisons of the performance results of various 

SMC filters are presented. Section 4 summarizes 

the methodology and the analysis results. 

 

2. METHODOLOGY 
    

(1) Bayesian filtering theory 
To define the problem of the Bayesian filtering, 

consider a generic dynamic state-space model 

which can be described as follows: 

tttt uxfx    ),,( 1   ),0(~ tt WN     (1) 

ttt xhy   ),(        ),0(~ tt VN     (2) 

where xn
tx  is the nx dimensional vector denoting 

the system state at time t. The operator 
xx nn

f :  expresses the system transition in 

response to the forcing data ut, and parameters θ. 
xx nn

h : expresses the measurement function. 

ωt and νt 
represent the model and the measurement 

error, and Wt and Vt represent the covariance of the 

error, respectively. In particular, we seek filtered 

estimates of xt based on the set of all available 

measurements y1:t = {yi, i = 1, …, t}. In the Bayesian 

recursive estimation, if the system and measurement 

models are non-linear and non-Gaussian, it is not 

possible to construct the posterior probability density 

function (PDF) of the current state xt given all the 

measurement analytically. When the analytic 

solution is intractable, an optimal solution can be 

approximated by the SMC filters explained in the 

next section. 

 

(2) Sequential importance sampling (SIS) 
Sequential Monte Carlo (SMC) filters are a set of 

simulation-based methods that provide a flexible 

approach to computing the posterior distribution 
without any assumptions about the nature of the 

distributions. The key idea of SMC is based on 

point mass (“particle”) representations of 

probability densities with associated weights as
5)

:

 

 
Fig. 1 A single cycle of SMC. 
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where i
tx and i

tw denote the i
th
 posterior state 

(“particle”) and its weight, respectively, and )(

denotes the Dirac delta function.  

Since it is usually impossible to sample from the 

true posterior PDF, an alternative is to sample from 

a proposal distribution, also called importance 

density, denoted by )|( tt yxq . After the several 

steps of computation, the recursive weight updating 

can be derived as follows: 
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The choice of importance density is one of the 

most critical issues in the design of SMC filters
6)

. 

The most popular choice is the transitional prior as 
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By substituting Eq. (5) into Eq. (4), the weight 

updating becomes 
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With these particles and associated weights, the 

estimated state vector tx̂  is the weighted mean of 

particles as: 
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   (7) 

The SIS algorithm is a Monte Carlo method that 

forms the basis for most SMC filters. A common 

problem with the SIS algorithm is the degeneracy 

phenomenon, where after a few iterations, all but 

one particle will have negligible weight. The 

degeneracy phenomenon can be reduced by 

performing the resampling step whenever a 

significant degeneracy is observed. A graphical 

representation of SMC is illustrated in Fig. 1. At the 

top we start with a uniformly weighted random 

measure. Then we use the received measure yt to 

compute its importance weight of each particle. If 

necessary, a resampling step is executed to select 

important particles with a uniform weight. If the 

number of particles is n, the weight is 1/n. The last 

step is a prediction introducing process noise.  

Propagate state 
with uniform weight

Estimate likelihood
using measurement

Update weights

Resample

Predict the next step

,{ 1|1  ttx }/1 n

,{ 1| ttx }tw

,{ |ttx }/1 n



 

(3) Variant of SMC filters 

Several variants of SMC filters have been 

proposed in the literature to overcome the 

degeneracy and sample impoverishment and to 

improve selection of importance density. The 

sample importance resampling (SIR) filter is 

derived from the SIS algorithm by performing the 

resampling step at every time index. The auxiliary 

SIR (ASIR) filter performs the resampling step at 

the previous time step, attempting to mimic the 

optimal importance density. The regularized 

particle filter (RPF) was suggested as a method to 

improve the sample diversity. It is worth noting that 

these filters can be (and often are) combined
6)

. 

 

 (4) Parameter inference 

Identification of parameter uncertainty is 

essential to obtain unbiased data assimilation. To 

handle inference of the unknown parameters, the 

concept of “artificial evolution” can be applied. 

That means that the parameter vector   is 

fluctuated at each time step, adding an independent, 

zero-mean normal increment as follows: 

ttt   1    ),0(~ 1
2  tt VsN      (8) 

where t is random noise, 
1tV is the variance of 

parameter particles at time t-1 before resampling, 

and s  is a small tuning parameter. The drawback 

of this approach is that estimated posterior 

distribution of parameters becomes more diffuse 

compared to the actual ones
7)

. Kernel smoothing
8)

 is 

one remedy for this problem and is accomplished 

by determining the covariance of parameters based 

on particles from previous time points. The smooth 

kernel density can be a mixture of Gaussian 

densities as follows: 
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where h is the variance reduction parameter. The 

kernel locations i

tm 1
 are specified by a shrinkage 

rule forcing the particles to be closer to their mean: 

111 )1(   t
i
t

i
t aam   with 21 ha   (10) 

It can be verified that the mixture probability in 

Eq. (9) has a covariance matrix 
1tV  and that it does 

not increase over time
8)

. A dual state-parameter 

updating scheme with kernel smoothing via the SIR 

particle filter can be summarized in Fig. 2. 

 

3. IMPLEMENTATION 
 

(1) Study area 

The SMC filters were applied to the Katsura 

River catchment (Fig. 3) to improve the river flow 

forecasting. This catchment is located in Kyoto,   

 
Fig. 2 Flowchart of the dual state-parameter updating scheme 

with kernel smoothing via the SIR particle filter.  

 

Japan, and covers an area of 1,100 km
2
 (887 km

2
 at 

the Katsura station). There are 13 rainfall 

observation stations and 6 river flow observation 

stations.  The Hiyoshi dam is located upstream, 

and the outflow record from that reservoir has been 

considered to be input data in a hydrologic model. 
 

(2) Hydrological model and simulation condition 
The storage function (SF) model

9)
 is one of the 

most commonly used conceptual hydrologic models 

for flood prediction due to its simple numerical 

procedure and its proper regeneration of nonlinear 

characteristics of flood runoff. The state-space form 

of the SF model adapted in this catchment is as 

follows: 
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Fig. 3 The Katsura River catchment. 
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where s is catchment storage (mm), t is time (hr), 

Adown is the downstream area from the dam (km
2
), 

qsim is simulated river discharge (m
3
/s), qt and qdam 

are observed discharge at the Katsura gauging 

station and at the Hiyoshi dam (m
3
/s), TL and Tdam 

are the lag time parameters of catchment and 

outflow from the dam reservoir (hr), and k and p are 

model parameters. ωt and νt are the state and the 

measurement error, respectively. Effective rainfall 

re is estimated as follows: 

 frre
 with 








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saaccum

saaccum

Rrf

Rr
f

1   (14) 

where r is rainfall (mm/hr), f is the runoff 

coefficient, raccum is the accumulated rainfall amount 

(mm), and Rsa is the saturation amount (mm). Areal 

mean values of hourly observed rainfall from the 13 

gauging stations were used as model input. Six 

model parameters, including k, p, TL, Tdam, f and Rsa, 

have been estimated from the events of 2004. In the 

state only updating scheme, pre-calibrated 

parameter values were used. On the other hand, the 

dual state-parameter updating scheme has been 

performed on five model parameters, excluding 

Tdam, which showed stable values compared to 

others. Both simulations were performed by the SIR 

particle filter with 3,000 particles. Covariance of 

the error of system (Wt) and measurement (Vt) were 

assumed to be 4 mm and 10% of the current 

observed discharge, respectively. 

 

 

 

 
Fig. 4 Results of the state only updating via the SIR particle 

filter from 11 to 16 July 2007. (a) Hourly precipitation. 

(b) Catchment storage. (c) Updated river discharge. (d) 

3-hour-lead forecasted river discharge. Black dots 

represent observed discharge. Blue line and area 

represent mean value and 95% confidential interval, 

respectively. Dashed line represents a deterministic 

modeling case. 

(3) State only updating scheme 

Fig. 4 shows the simulation results of the state 

only updating via the SIR particle filter compared to 

observations and a deterministic prediction. In this 

scheme, particles are resampled in each observation 

time step, and catchment storage (s) is fluctuated 

according to the system noise.  

While updated river discharge using a state only 

updating scheme shows good conformity between 

observation and simulation (Fig. 4(c)), a forecast 

based on the same particles does not reproduce the 

river flow properly compared to a deterministic 

prediction (Fig. 4(d)). To compare off-line optimal 

parameters with those calibrated from the past event 

(Table 1), several parameters show quite different 

values. In this respect, it can be inferred that state 

updating based on inappropriate parameters may be 

one of the causes misleading the forecast.  
 

(4) Dual state-parameter updating scheme 

In the dual state-parameter updating scheme, 

initial values of each parameter have been set to 

uniform distribution with widths that cover 

deviations of pre-calibrated parameter distributions. 

In other words, true static values of parameters are 

assumed to be located within these initial 

distributions. Inference of five parameters (e.g., k, 

p, TL, f and Rsa) was performed by the kernel 

smoothing method in DUS. The value of kernel 

smoothing parameter a in Eq. (9) was set as 0.95. 

 

 

 
Fig. 5 Results of the dual state-parameter updating via the SIR 

particle filter from 11 to 16 July 2007. (a) Hourly 

precipitation. (b) Catchment storage. (c) Updated river 

discharge. (d) 3-hour-lead forecasted river discharge. 

Black dots represent observed discharge. Blue line and 

area represent mean value and 95% confidential interval, 

respectively. Dashed line represents a deterministic 

modeling case. 
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Table 1. Parameter information. 
Model 

parameters 

Pre-calibrated 

from 2004 events 

Off-line optimum 

from 2007 events 

Initial range  

for dual updating 

k (-) 17.0 30.0 10.0~40.0 

p (-) 0.6 0.66 0.4~0.9 

TL (hr) 3.8 6.0 3.0~7.0 

f (-) 0.33 0.65 0.1~0.8 

Rsa (mm) 82.0 105.0 50.0~150.0 

Tdam (hr) 4.0 4.0 4.0 

 

Fig. 5 illustrates the simulation results of the dual 

state-parameter updating. Compared with the state 

only updating case, a forecast by the dual updating 

scheme shows better conformity with observations 

(Fig. 5(d)). Furthermore, the unexpected drawdown 

of hydrograph in the rising part (Fig. 4(d)) is not 

shown in the dual updating case. Traces of the 

catchment storage s present different patterns in 

Fig. 4(b) and Fig. 5(b), whereas updated discharge 

hydrographs show similar traces in both cases. 

Fig. 6 presents the traces of parameter 

distribution. One can observe a significant 

reduction of parameter uncertainty for all 

parameters after the first flood peak. In comparison 

with the off-line optimum (Table 1), estimated 

parameters show similar ranges, especially in 

parameter k, TL and f. 
 

 

 

 

 

 
Fig. 6 Traces of parameter k, P, TL, f, Rsa of the SF model using 

dual state-parameter updating of the SIR particle filter 

from 11 to 16 July 2007. Black lines represent median 

value, and gray area represents 95% confidential 

interval. 

 
Fig. 7 Scatter diagram of simulation results. Cross dots 

represent results of state only updating. Circle dots 

represent results of dual state-parameter updating. 
 

Table 2. Statistics on model accuracy. 

 Deterministic 
State only 

updating 
Dual updating 

RMSE (m3/s) 44.6 36.4 20.4 

Nash 

-Sutcliffe 
0.73 0.82 0.94 

 

It is worth noting that when the artificial 

evolution is applied for parameter inference instead 

of kernel smoothing in the dual updating scheme, 

estimated parameters present more diffusive 

distributions and unstable inference is produced 

resulting in different posterior distributions at each 

simulation. However, inference from the kernel 

smoothing presents relatively consistent results 

because there is less uncertainty of parameters. 

In the scatter diagram shown in Fig. 7, the dual 

state-parameter updating scheme presents enhanced 

simulation results in the overall flow regime from 

high flow to low flow. Additionally, the model 

accuracy criteria shown in Table 2 confirm that the 

DUS is superior to other simulations.  

 

(5) Comparison of various SMC filters 

Several different versions of the SMC filters, 

such as SIR, ASIR, and RPF with the MCMC move 

step, were implemented under the same simulation 

conditions. The Markov chain Monte Carlo 

(MCMC) move step of RPF, which is used for 

improving sample diversity in the resampling step, 

is based on the Metropolis-Hastings algorithm
10)

. 

The dual state-parameter updating scheme has been 

adapted in all the cases with 3,000 particles. A 

comparison of the simulated discharge hydrograph 

is illustrated in Fig. 8. There is no significant 

difference in the estimated 3-hour-ahead forecasting 

via three SMC filters.  

Although three SMC filters reproduce river 

discharge properly in the first flood peak (1~30 

hour) and the recession part, all the SMC methods 
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Fig. 8 Forecasted river discharge (3 hour ahead) by three SMC 

filters from 11 to 16 July 2007. Black dots represent 

observed discharge.  

  
Fig. 9 Sensitivity analysis of the effects of particle numbers on 

the prediction accuracy. (a) Updated river discharge. (b) 

Forecasted river discharge. 

 

overestimate the discharge during 65-80 hours. 

Uncertainty of forcing data (rainfall) and no 

consideration of spatial heterogeneity in the SF 

model are plausible reasons. 

Sensitivity analysis was performed concerning 

the effects of particle numbers on the prediction 

accuracy (Fig. 9). RMSE statistics of simulated 

discharge show stabilized accuracy in both updating 

and forecasting via three SMC filters when the 

number of particles exceeds 1,000. In terms of 

forecasting accuracy, SIR and RPF show similar 

RMSE statistics, while ASIR presents a slightly 

higher number of errors than others. Researchers 

also stated in a previous study
6)

 that if the 

importance density of ASIR does not characterize 

the transitional prior )|( 1
i
tt xxp   

for some reason 

(e.g., process noise is large), the use of ASIR can 

even degrade the performance. The simulation time 

for 1,000 particles is less than 2 min in three SMC 

filters, which is short enough to be applied for 

real-time forecasting.  

 

4. CONCLUSIONS 
 

Sequential Monte Carlo (SMC) filters were 

applied to a conceptual hydrologic model, the 

storage function model, using state only updating 

and the dual state-parameter updating scheme. The 

river discharge forecast via the SMC filters was 

compared with observations. The forecast provided 

by the dual state-parameter updating scheme was 

superior to that of state only updating and 

deterministic modeling in terms of the model 

accuracy criteria, a scatter diagram, and simulated 

hydrographs. In the dual state-parameter updating 

scheme, parameter inference was performed by the 

kernel smoothing method. A significant reduction 

of parameter uncertainty was observed for all 

parameters after the first flood peak, and estimated 

parameter distributions showed good conformity 

with off-line optimum. Performance results of SIR 

and RPF showed similar forecasting accuracy, 

while ASIR resulted in a slightly higher number of 

errors than others. However, RMSE statistics of 

three SMC filters presented stable results when the 

number of particles was over 1,000. 

The SMC filters are applicable to more complex 

hydrologic models, such as process-based and 

spatially distributed hydrologic models, in which it 

is difficult to use the conventional data assimilation 

methods. We will examine the performance of the 

SMC filters on a distributed hydrologic model. 
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