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   A short-term flood prediction algorithm with a 2D dynamic wave model and a particle filter is 

proposed to consider the uncertainties of hydrologic input data and channel roughness. The particle filter 

makes it possible to utilize a non-linear and non-Gaussian model for estimating time variant channel 

roughness and inlet flow uncertainty by considering sequentially updated water stages. The proposed 

method was applied to the Katsura River located in Kyoto, Japan, and it was verified first through a 

synthetic experiment. The experiment result shows that the algorithm successfully traces the hidden true 

values, which are the correct inlet discharges and Manning’s roughness coefficient, on a real-time basis. 

The prediction results were also compared with observed water stages, and they showed good agreements 

with the observed water stage.  
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1. INTRODUCTION 
 

   Flood forecasting is crucial information for 

mitigating and/or protecting the damages induced by 

flood to our properties and human lives. In general, 

a hydrological model is utilized to predict the 

volume and peak time of flood, based on a given 

rainfall information. Then, a hydraulic model 

calculates water stage profile for a specific river 

channel to provide more detailed flood information. 

   The most successful method of accurate flood 

forecasting may need precise rainfall information 

and a well-organized hydrologic model, as well as 

hydraulic models. However, it is not avoidable to 

suffer much erroneous forecasting information 

through a series of conversion, which is from 

rainfall to discharge and from discharge to water 

stage. Thus, we are still lacking in our forecasting 

methods, not only in accurate rainfall forecasting 

but also in proper hydrologic and hydraulic 

modeling. 

   Among many error sources of forecasting in the 

above mentioned processes, this study focuses on 

data assimilation into a hydraulic model to properly 

convert uncertain river discharge information into 

correct water stage information on a specific river 

channel. Generally, input data into a hydraulic 

model, such as inflow from the upper boundary, 

already include a certain amount of error, and 

additional system error that comes from a hydraulic 

model will be added during simulations. To avoid 

these conventional error sources, this study proposes 

a new method of hydraulic model utilization, which 

considers the input error, system error, and 

observation error using a recursive Monte Carlo 

simulation algorithm.  

   Real-time updating of model state variables has 

already been adopted in many researches with 

stochastic approaches like the Kalman filter and 

particle filters. Shiiba et al.
1)

 introduced the Kalman 

filter into the 1D dynamic wave model to improve 

forecasting accuracy considering observed water 

stage and discharges. Hsu et al.
2)

 showed that 

updating of the channel roughness coefficient during 

a simulation considering observed water stage 

improves prediction capability, and a fixed channel 

roughness coefficient results in an inaccurate 

prediction. Discharge also includes uncertainties, as 

pointed out by Dottori et al.
3)

 and Baldasarre and 

Montari
4)

 even observed that discharge data include



 

 

  
Fig. 1 Real-time water stage prediction algorithm proposed in this study 

 

many uncertainties. In addition, discharge data 

converted by a rating curve from observed water 

stages includes many uncertainties.  

   Arico et al.
5)

 presented a simultaneous 

estimation method for discharge and channel 

roughness, and proved that it is essential to consider 

heterogeneous channel roughness. It is obvious that 

channel roughness, inlet flow, and the interaction of 

these factors are critical items for accurate water 

stage estimation. A stochastic model or a real-time 

based calibration seems necessary for considering 

many errors during hydrologic and hydraulic model 

simulations.  

   Recent researches have introduced a new type of 

recursive updating scheme, called particle filters 

(PFs), into 1D hydraulic models to consider the 

non-linearity of system models (e.g., Montanari et 

al.
6)

; Matgen et al.
7)

; Giustarini et al.
8)

). Tachikawa 

et al.
9)

 also introduced PFs into the 1D hydraulic 

model, and they improved the predictability of water 

stages by using the sequentially updated water 

stages. However, the 1D model was not able to fully 

consider the geomorphologic characteristics of 

channel, and the tracking ability of water stage in 

their study was limited. In terms of the method 

incorporating noise, the conventional Kalman filter 

algorithm has limitations in its application to 

unknown non-normal variances in the state or 

observational equation (Bradley et al.
10)

). However, 

PFs are applicable in the non-linear system without 

any Gaussian assumption.  

   In this study, we introduce an improved 

prediction algorithm that is based on a 2D dynamic 

wave model and particle filters considering input, 

system, and observation errors. To verify the 

proposed algorithm, we tested our method on a short 

reach on the Katsura River in Kyoto, Japan. A 2D 

dynamic wave model is adopted in this study to 

reproduce the relation of water stage, discharge, and 

parameters on a complex river bed more precisely. 

   The paper is composed of the following 

sections. Section 2 describes the proposed 

methodology. Section 3 is devoted to particle filters 

and noise generation methods. The presented 

algorithm is verified with a synthetic experiment in 

section 4. Then, in section 5, we implement the 

performance analysis of the proposed method. 

Finally, section 6 summarizes the study.  

 

2. METHODOLOGY 
 

(1) Prediction algorithm 

   The prediction algorithm largely consists of a 

particle filtering system (estimation process) and a 

prediction system (Fig.1). The prediction algorithm 

runs on results through an estimation process. The 

estimation process is composed of a perturbation 

step, an update simulation step, and a resampling 

step. First, the boundary condition, such as the 

upstream discharge and the downstream water stage, 

and model parameter values (channel roughness) are 

disturbed to consider their uncertainties at the 

perturbation step. Then, the state variables, which 

are calculated by the 2D dynamic wave model, and 

parameter values are sequentially updated in the 

resampling step according to the weight against the 

sequentially updated water stage. Next, the state 

variables and parameter values are transferred to the 

prediction process to reflect the current state more 

accurately after updating. The prediction process is 

calculated up to 6 hours, with the updated state 

variables and parameter values every hour.  

   The proposed method is applied to the Katsura 

River located in Kyoto, Japan. The reach length is 

about 2km and the study reach is covered with 500 

structure grids in the calculation domain (Fig. 2). 

There are two water stage stations at both ends 

without tributaries, so the characteristics of the 

reach are good for application of the method since 

we neglect the lateral flow in consideration of 

discharge uncertainties. In addition, the flood plain 

exists on both sides of the main channel. The Kamo 

River joins at the upstream of the reach and the Uji 

River joins at the downstream of the reach. 
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Fig. 2 Location of the study area and the 2D model structure 

 

Although they do not join inside the study reach, the 

effect of the tributaries and flood plain makes flow 

conditions very complex.  

   We will firstly verify our proposed method with 

a synthetic experiment, which is based on artificial 

true values. The method is going to be tested on a 

natural river channel with the observed data to 

confirm its predictability. The synthetic experiment 

consists of two steps. The first step is to generate 

―True Values‖ with the existing upstream discharge, 

downstream water level, and arbitrarily generated 

Manning roughness coefficient. The water stage and 

discharge of each cross section are simulated 

through this step, and these simulation results are 

regarded as ―True Values.‖ The second step is to 

test the particle filter algorithm—namely, whether 

or not the algorithm successfully traces the hidden 

―True Values.‖ In this testing step, upstream 

discharges and downstream water stage, including a 

certain level of error, are used as the boundary 

condition. Then some errors were considered in 

Manning roughness coefficient as well. Based on 

this condition, the particle filter algorithm with the 

correct water stage information was utilized to trace 

the correct discharges and proper Manning 

roughness coefficient on a real-time basis. 

   It is believed that a large number of particles 

improves the accuracy of the estimation and 

prediction. The algorithm proposed in this study has 

been tested with different particle numbers, such as 

100, 300, and 500 particles. We have determined 

that 100 particles in our algorithm are sufficient in 

the sense of calculation time and simulation 

accuracy. 

 

(2) 2D Dynamic wave model  
   The 2D dynamic wave model is composed of the 

continuity equation (Eq. (1)) and the momentum 

equation (Eq. (2) and (3)). Then, the equations are 

numerically solved with Finite Volume Method 

(FVM) on a structure grid. In dealing with the 

convection term, the simple first order upwind 

scheme is utilized. The Adams-Bashforth method is 

introduced for time integration (Nagata
11)

). 
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where h  is water depth and sZ  is water stage; t   

is time; u  and v  are depth averaged velocity in x 

and y direction; M and N  denote discharge flux in 

x and y direction;   is density of water; and bx  

and by  are the bed shear stress in x and y 

direction.  

 

3. PARTICLE FILTERING SYSTEM 
 

   PFs perform the sequential Monte Carlo (SMC) 

estimation based on particle representations of 

probability densities within Bayesian theorem 

(Ristic et al.
12)

). The sequential process of particles 

in time using the nonlinear model is preceded up to 

the next available measurement (Salmon and 

Feyen
13)

). Among the various PFs, the sequential 

importance resampling (SIR) method is introduced 

in this study since the SIR can reduce the 

meaningless calculations and estimate current state 

more exactly.  

 

(1) Perturbation process 

   From the assumption that all errors come from 

uncertainties of channel roughness and inlet inflow, 

we incorporate some errors to Manning’s roughness 

coefficient, inlet discharge, and downstream water 

stage before the simulation step.  

   The general method, which adds white noise to 

the chosen particles like Eq. (6), shows the 

limitations in tracking rapidly changing parameter 

values and state variables. Therefore, the modified 

extrapolation method, which showed appropriate 

ability when tracking abruptly changed channel 

roughness with Kalman filter in the study of 

Crissman et al.
14)

, is introduced to generate the noise 

of Manning roughness coefficient and inlet flow, as 

in Eq. (5) and Eq. (4), respectively. 

   The polynomial extrapolation method reduces 

the variation of particles, but it shows the weakness 

in inflection point, such as peak time of discharge 

hydrograph. As an alternative to these problems, we 

introduced the two types of perturbation equations 

to generate noise of Manning’s roughness 

coefficient. In order to choose the perturbation 

equation, the discharge ratio ( 1( ) /obs obs obs
t t tQ Q Q ), 

where obs
tQ  

is the discharge at the current time and 

1
obs
tQ   is the discharge at the previous time, is 
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introduced. Several cases were tested to determine 

the criteria to choose the perturbation equation, and 

it has been confirmed that a 20% discharge ratio is 

the proper value in our subject river channel. In the 

case when the ratio is less than 20%, Eq. (5) is 

applied, and Eq. (6) is applied when the ratio is 

more than 20%. It should be noted that this value is 

not a general index for other river channels. 

 

1 1 1 1 1( )       (0,0.1 )  (4)i i obs obs i i obs
t t t t t t tQ Q Q Q N Q        

       1 1 1 1
ˆ ˆ( )             (0,  0.005)  (5)i i i i

t t t t t tn n n n N       

     1 1 1                                  (0,  0.01)  (6)i i i i
t t t tn n N    

      1 1 1                                 (0,  0.1)  (7)i obs i i
t t t th h N      

 

where i
tQ , i

tn  and i
th  indicate the discharge, 

Manning roughness n, and downstream water stage 

of i-th particle at time t, respectively. i
t , i

t , i
t  

and i
t  indicate the errors drawn from the normal 

distribution. obs
tQ and obs

th  indicate the observed 

discharge and the observed downstream water stage. 

ˆ
tn indicates the average roughness coefficient in 

each time step according to the weight in Eq. (11).  

 

(2) Resampling process 
   The key idea in the particle filters is to represent 

the posterior pdf )|( tt yxp with a set of random 

draws, called particles (Salmon and Feyen
13)

). The 

posterior density at time t is approximated as Eq. (8) 

and the updated equation can be shown as Eq. (9). 
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where i
tx , i

tw  denote i th particle and its weight, 

respectively.  indicates the Direc delta function 

and tx , ty are the state vector and the measurement 

vector at time t. 

   At each updating step, the weight, which is 

calculated by Eq. (9), is calculated against the 

observed water stage of 2 points (upstream and 

downstream ends), respectively. Then, we 

calculated joint probability by multiplying the 

likelihood of 2 points to represent the weight of 

each particle (Eq. (10)) (Matgen et al.
7)

). The joint 

probability of each particle was normalized as 

follows (Eq. (11)): 

 

 (10)

1

pN
i, jiw w
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j

 
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Fig. 3 The comparison of averaged water stage in the synthetic 

experiment 

 

 
Fig. 4 The comparison of inlet discharge in the synthetic 

experiment 

 

 
Fig. 5 The comparison of Manning roughness coefficient in the 

synthetic experiment 
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where i,j
t

w  indicates the weight of i  th particle at 

time t  calculated against j th observation. i
t

W
 

denotes the normalized weight of each particle at 

time t , 
pN  is the number of updating points. 

   According to the normalized weight, the 

particles are removed or multiplied in the 

resampling step. The systematic resampling method 

presented in Kitagawa
15)

 is introduced among 

various resampling methods. 

 

(3) Constraints on noise generation 
   This method considers various cases with the 

disturbed channel roughness and inlet discharge, but 

particles are controlled by only the normalized 
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weight calculated against the updated water stage. 

Therefore, it is not enough to control the two 

randomly generated variables—the Manning 

roughness and inlet discharge—with only the weight 

calculated against updated water stage. In order to 

reduce the meaningless calculation, we assume the 

errors of observed discharge are fewer than 35%.  

 

4. EVALUATION WITH SYNTHETIC DATA 
 

(1) Synthetic experimental design 

   We verify the estimation method with the 

synthetic data. The synthetic data is based on the 

real event, which occurs from 6:00 on October 20, 

2004, to 15:00 on October 21, 2004, at the natural 

river reach from Hazukashi station to Nosou station 

(See Fig. 2). In general, Manning’s roughness is 

dependent on water depth and ranges from 0.02 to 

0.07. Thus, we present a simple relationship 

equation of Manning’s roughness to verify the 

proposed algorithm. The equation is based on the 

assumption that Manning’s roughness coefficient 

(
tn ) is linearly inverse proportional to water stage 

(
th ) at time t as follows: 

 

(18 ) / 250 0.02 (12)t tn h    

 

The water stage of upstream is generated from 

the first step of the synthetic experiment. It is 

considered to be the synthetic truth instead of the 

measured upstream water stage. Then predetermined 

synthetic truths, which are water stage, input 

discharge, and Manning n, are utilized as 

verification data and marked as ―TRUE‖ in the Figs. 

3, 4, and 5. In addition, only the water stage of 

synthetic truth is utilized as updating data for the 

second step of the synthetic experiment.  
 

(2) Evaluation results 

   Averaged values of water stage, inlet discharge, 

and Manning’s roughness coefficient are marked as 

a black line. The values of each particle are marked 

as red points in Figs. 3, 4, and 5. According to the 

graphs, the averaged values are similar to ―True,‖ 

which is synthetic truth in each graph. Root mean 

square error (RMSE) is utilized to compare the 

averaged values with synthetic truth. The RMSE for 

water stage and discharge are 0.11m and 31.75 m
3
/s, 

respectively. Then, the range of particles covers the 

―True.‖  

   Particularly, the initial errors of Manning’s 

roughness were also corrected during the tracking 

procedure by the learning process of particle filters. 

Such a simultaneous estimation of the Manning’s n 

and inlet discharge could present approximately 

averaged values and reduce the errors.  

 
Fig. 6 The comparison of prediction water stage at Hazukashi 

 
Fig. 7 The comparison of prediction discharge at Hazukashi 

 
Fig. 8 The estimated tendency of Manning roughness 

 

Table 1 Water stage comparison of the estimation and prediction at Hazukashi 

Classification 
RMSE of water stage 

(m) 

Maximum absolute 

error (m) 

Estimation 0.024 0.075 

1hr prediction 0.097 0.258 

3hr prediction 0.291 0.758 

6hr prediction 0.565 1.376 

 

5. PREDICTION RESULTS AND ANALYSIS 

USING OBSERVED DATA 
 

   In this section, the predictability of the algorithm 

with observed data is presented. Most of the applied 

conditions for this simulation are the same with 

synthetic experiment, but the simulation is different 

in that this test utilizes real observed water stage for 

updating and true values do not exist.  

   In the prediction process, Manning’s roughness 

coefficient is fixed as the value chosen in the 

resampling step at the current time step, and the 
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predicted inlet flows up to 6 hours are determined 

by the proportions of particle’s inlet discharge 

against the given discharge at the current time step. 

The prediction process performs up to 6 hours.  

Then the results at 1 hour (1HR), 3 hours (3HR), 

and 6 hours (6HR) are compared with the observed 

water stage and discharge (OBS) at Hazukashi 

station (Figs. 6 and 7). EST indicates the average 

values with the weight, while the prediction results 

are averaged with even weight. Table 1 shows the 

comparison results of the estimation and prediction 

of the water stage. 

   The estimated water stage and 1 hour ahead 

water stage shows good agreement with the 

observed one. With increased lead time, the 

accuracy of the prediction result is less than the 1 

hour ahead prediction result due to the fixed 

roughness coefficient chosen in the resampling step, 

while the real channel roughness varies according to 

time.  

   In addition, the estimated Manning’s roughness 

coefficient is plotted in Fig. 8 with the values of 

each particle. Manning’s roughness coefficient is so 

varied due to the flood plain and backwater 

increasing the channel roughness when flooding 

occurs. Finally, Fig. 7 also shows that the estimated 

discharges are similar to the observed discharges, 

even though there is some discrepancy at the peak 

point and the recession limb of the hydrograph. 

However, the discrepancy in Fig. 7 may come from 

the rating curve conversion because the discharge is 

converted from the observed water stage. 

 

6. CONCLUSION 
 

   Stochastic approaches are introduced to the 2D 

dynamic wave model to incorporate errors to 

consider the uncertainties of inlet discharge and 

channel roughness. The estimation method is 

verified with the synthetic experiment, and 

prediction results were compared with the observed 

water stage. The results of tests implemented in this 

study show that the proposed algorithm is not only 

an efficient prediction tool for water stage, but also 

a simultaneous estimation tool of inlet discharge and 

channel roughness.  

   In further research, the lateral flow will be 

considered and the method will be applied to more 

events and other reaches for more general approach 

to natural channels. 
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