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Abstract Accurate streamflow predictions are crucial for mitigating flood damage and addressing 
operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due 
to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, 
we implement two ensemble-based sequential data assimilation methods for streamflow forecasting via the 
particle filters and the ensemble Kalman filter (EnKF). Among variations of filters, the ensemble square root 
filter (EnSRF) and the lagged regularized particle filter (LRPF) are implemented for a distributed hydrologic 
model. Two methods are applied for short-term flood forecasting in a small-sized catchment located in Japan 
(<1000 km2). Soil moisture contents are perturbed by process noises and model ensembles are updated by 
streamflow observation at the outlet. In the case of the LRPF, state updating is performed through a lag-time 
window to take into account the different response times of hydrologic processes. For different flood events 
and various forecast lead times, LRPF forecasts outperform EnSRF forecasts and deterministic cases. The 
EnSRF shows limited performance in both forecasting accuracy and probabilistic intervals, which require 
introduction of a lag-time window in the filtering processes. 
Key words  sequential data assimilation; flood forecasting; particle filter; ensemble Kalman filter;  
distributed hydrologic model 
 
 
INTRODUCTION 

Data assimilation is a way to integrate information from a variety of sources to improve prediction 
accuracy while taking into consideration the uncertainty in both a measurement system and a 
prediction model. State-space filtering methods based on variations of the Kalman filter (KF) 
approach have been proposed and implemented because of their potential ability to explicitly handle 
uncertainties in hydrologic predictions (Vrugt et al., 2006). However, the KF approaches for a 
nonlinear system such as the extended Kalman filter (EKF) have limitations in practical application 
due to their instability with strong nonlinearity and the high computational cost of model derivative 
equations, especially for high-dimensional state-vector problems such as spatially distributed models. 
To cope with the drawbacks of EKF, Evensen (1994) introduced the ensemble Kalman filter (EnKF), 
which uses an ensemble of forecasts to estimate background-error covariances. Thus, no adjoint or 
linearized model is needed for error estimation, and the method provides great versatility, as any 
number of variables can be included in the update procedure. However, in the analysis step of the 
conventional EnKF, perturbation of measurements is used to update ensemble members and is an 
additional source of uncertainty. Thus, the ensemble square root filter (EnSRF) has been developed 
to avoid sampling issues associated with the use of “perturbed observations” in stochastic analysis 
ensemble update methods (Whitaker & Hamill, 2002; Clark et al., 2008). 
 Another alternative is particle filters, which are a Bayesian learning process in which the 
propagation of all uncertainties is carried out by a suitable selection of randomly-generated 
particles without any assumptions made about the nature of the distributions (Gordon et al., 1993; 
Arulampalam et al., 2002). Unlike the Kalman filter-based methods, which are basically limited to 
the linear correction step and the assumption of Gaussian distribution errors, the particle filters 
have the advantage of being applicable to non-Gaussian state-space models. In recent years, these 
methods have received considerable attention in hydrology and earth sciences (e.g. Moradkhani et 
al., 2005; Weerts & El Serafy, 2006; Noh et al., 2011a,b).  
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 In this study, we implement and compare two sequential data assimilation methods for flood 
forecasting using a distributed hydrologic model. Recently-proposed elaborate schemes are 
selected: the ensemble square root filter modified from the original EnKF and the lagged 
regularized particle filter from the particle filters. A distributed hydrologic model, the water and 
energy transfer processes (WEP) model (Jia et al., 2009), is applied to the Katsura River 
catchment, Japan. The paper is organized as follows: The next section outlines the Bayesian 
filtering theory, ensemble Kalman filtering, and particle filtering followed by a section that 
presents the case study results, which demonstrate the applicability of the applied filtering 
methods. The EnSRF and the LRPF are evaluated for hindcasting of streamflow in the Katsura 
River catchment using the WEP model. Finally, the results section summarizes the results and 
conclusions.  
 
 
METHODS OF SEQUENTIAL DATA ASSIMILATION 

Bayesian filtering theory 

To define the problem of Bayesian filtering, consider a general dynamic state-space model, which 
is described as: 

),0(~),( 1 kkkkkk WNuxfx ωω+= −     (1) 
),0(~)( kkkkk VNvxhy ν+=  (2) 

where xk is the nx dimensional vector denoting the system state at time k. The operator 
xx nnf ℜ→ℜ:  expresses the system transition in response to the forcing data ku (e.g. rainfall, 

weather data). yx nnh ℜ→ℜ:  expresses the measurement function. ωk and νk represent the model 
error and the measurement error, respectively, and kW  and kV  represent the covariance of the error. 
In the Bayesian recursive estimation, if the system and measurement models are nonlinear and 
non-Gaussian, it is not possible to analytically derive the posterior probability density function 
(pdf) of the current state xk on the measurement. 
 
Ensemble Kalman filtering 

The ensemble Kalman filter (EnKF) is a suboptimal estimator, where the error statistics are 
predicted using a Monte Carlo method. The EnKF consists of update and prediction steps. The 
ensemble mean of the states is defined as: 
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where i
kx denotes the state of ith ensemble and n is the number of ensemble members. If the 

measurements are a nonlinear combination of state variables, the Kalman gain is calculated as: 
1)( −+= kyyxy VPPK

kk
 (4) 

( )( )∑
=

−−
−

=
n

i

T
k

i
kk

i
kxy xhxhxx

n
P

k
1

)()(
1

1

 (5) 

( )( )∑
=

−−
−

=
n

i

T
k

i
kk

i
kyy xhxhxhxh

n
P

k
1

)()()()(
1

1  (6) 

 In the conventional Kalman filter, perturbed observations, which can have a detrimental effect 
in the analysis step, are used in the update equation (Clark et al., 2008). Whitaker & Hamill (2002) 
introduced the ensemble square root filter (EnSRF), which provides the correct analysis error 
covariance without perturbing the observations. In this method, the ensemble is broken into mean 
and anomaly portions, and updating is performed separately for the ensemble mean and anomalies: 
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where the prime denotes the deviations of each ensemble from the ensemble mean. The ensemble 
mean is updated with the traditional gain equation given above, while anomalies are updated with 
a reduced gain given by: 

( ) ( )[ ] 11 −−
++



 +=′ kkyy

T

kyyxy VVPVPPK
kkk

 (9) 

 In equation (8), 0=′iky , which means no perturbation of observation in anomalies. Whitaker 
& Hamill (2002) showed that the sampling error associated with perturbed observations makes the 
EnSRF more accurate than the conventional EnKF. 
 
Particle filtering 

The particle filters are simulation-based methods that provide a flexible approach to computing 
posterior distributions without any assumptions about the nature of the distributions. The key idea 
of the particle filters is based on point mass (“particle”) representations of probability densities 
with associated weights: 
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where i
kw denotes the ith weight, and )(⋅δ denotes the Dirac delta function. After several 

computational steps, weight updating becomes: 
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where )|( i
kk xyp  is the so-called likelihood of each ensemble. Detailed descriptions and 

introductions of the particle filters can be found in Arulampalam et al. (2002) and Moradkhani et 
al. (2005). In conventional particle filters, the resampling step is performed to avoid degeneracy 
phenomenon, in which, after a few iterations, all but one particle will have negligible weight (van 
Leeuwen, 2009). However, the particles resampled from high weights are statistically selected 
many times. This leads to another problem, known as sample impoverishment, which means a loss 
of diversity among the particles because the resultant sample will contain many repeated points 
(Ristic et al., 2004). An alternative solution is to introduce the regularization step when sample 
impoverishment becomes severe (Musso et al., 2001). The main idea of the RPF consists of 
changing the discrete approximation of posterior distribution to a continuous approximation, so the 
resampling step is changed into simulating an absolutely continuous distribution, thus producing a 
new particle system with n different particle locations. The RPF can be used with the Markov 
chain Monte Carlo (MCMC) move step (Gilks & Berzuini, 2001) based on the Metropolis-
Hastings algorithm to approximate the posterior distribution properly. 
 In a distributed hydrologic model, there are many types of state variables, each of which 
interacts with others based on different time scales, which need to be considered in the data 
assimilation. In this study, we implement the lagged regularized particle filter (LRPF) to deal with 
the delayed response, which originates from different time scales of hydrologic processes in a 
distributed model. A detailed description of the LRPF can be found in Noh et al. (2011a). 
 
 
IMPLEMENTATION 

Study area and model setup 

Two sequential data assimilation methods are applied to the Katsura River catchment for short-
term river flow forecasting. This catchment is located in Kyoto, Japan, and covers an area of 
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1100 km2 (887 km2 at Katsura station) (see Fig. 1). The elevation in the catchment ranges from 4 
to 1158 m, with an average of about 325 m. The controlled outflow record from the dam reservoir 
is given as inflow to the hydrologic model, and the model simulates rainfall–runoff processes for 
the downstream of the dam.  
 The hydrologic model used is the water and energy transfer processes (WEP) model, which 
was developed for simulating spatially variable water and energy processes in catchments with 
complex land covers (Jia & Tamai, 1998; Jia et al., 2009). State variables of WEP include soil 
moisture content, surface runoff, groundwater tables, discharge and water stage in rivers, heat flux 
components, etc. (Fig. 2). Runoff routing on slopes and in rivers is carried out by applying a 1D 
kinematical wave approach from upstream to downstream. This model has been applied in several 
watersheds in Japan, Korea, and China with different climate and geographic conditions (Jia et al., 
2001, 2009; Kim et al., 2005).  
 The model setup uses a 250 m grid resolution and an hourly time step. We use hourly observe
d rainfall from 13 observation stations organized by the Ministry of Land, Infrastructure, Transport 
 
 

      
Fig. 1 The Katsura River catchment. 

   
 

  
Fig. 2 A schematic view of WEP model (Jia et al., 2001). 
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and Tourism in Japan and hourly observed meteorological data, including air temperature, relative 
humidity, wind speed, and duration of sunlight, from the Kyoto station, which is organized by 
Japan Meteorological Agency. The nearest-neighbour interpolation method is used for representa-
tion of spatial distribution of rainfall. Ensemble simulation is conducted on a multiprocessing 
computer (96 cores in the supercomputing system of Kyoto University) via parallel-computing 
techniques of an open message passing interface (open MPI) (http://www.open-mpi.org/).  
 
Processes and measurement error models 

Because there are numerous state variables in a distributed hydrologic model, it is not practical to 
treat the uncertainty of all state variables with a limited number of ensembles. In this study, we 
select soil moisture content in each grid as hidden state variables and streamflows at the Katsura 
station as an observable variable for data assimilation. Global multipliers are introduced to perturb 
state variables for the EnKF and the LRPF. The total soil moisture depth at the previous time step 

1−kS  is aggregated for three soil layers within the catchment as: 
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where l
jθ and l

jd are the volumetric soil moisture content (m3/m3) and the soil depth (m) in each 
layer, and l and m represent the number of soil layers and the total number of grids within the 
catchment, respectively. Process noise of the soil moisture content 

ksoilw is then added to the 
aggregated state variable 1−kS  as: 

ksoilkk wSS += −1
ˆ  (13) 

ksoilw is assumed as Gaussian distribution ),0( 2
ksoilN σ  having a standard deviation of: 
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In the above equation, soilα  and soilβ  are adaptable parameters. The multiplicative factor sγ  and 

the perturbed states of soil moisture l
jθ̂  are calculated as follows: 
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 The measurement error of the discharge is assumed to be a Gaussian distribution ),0( 2
kobsN σ  

as in previous studies (Georgakakos, 1986; Weerts & El Serafy, 2006; Salamon & Feyen, 2010). 
The standard deviation of the measurement error is chosen as: 

obskobsobs y
k

βασ +=  (17) 

where obsα is set to 0.1 and the constant coefficient obsβ is applied as 5 (m3/s) to consider 
uncertainty in periods of low flow, such as artificial water use and dam reservoir control.  
 
 
RESULTS 

We implement two sequential data assimilation methods, the EnSRF and the LRPF, for the hind-
casting of streamflow using the WEP model. Simulation periods and observation are shown in 
Table 1. Hourly observed discharges at the Katsura station are used for data assimilation, and 
forecasted discharges are predicted up to a 24-h lead time. The lag time of 8 h is applied in the 
LRPF. A5-day warm-up period is added before the data assimilation starts. 
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Table 1 Simulation periods and observations. 
Simulation period Max. observed flow at Katsura (m3s-1) Total areal rainfall (mm) 
1 Jun.–31 Jul. 2007 336.9 491 
1 Jun.–31 Aug. 2003 361.6 729 
 

   
Fig. 3 Nash-Sutcliffe model efficiency for varying forecast lead time. The black lines represent the LRPF. 
The dashed lines represent the EnSRF. The dotted lines represent a deterministic modelling case. 

 
 
 Figure 3 shows Nash-Sutcliffe efficiency of each particle filter for varying lead times in the 
years 2004 and 2003 calculated as: 
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where ky  is observation, y  is the mean of observation, 

ksimy  is the forecasted streamflow at the 
measurement site, and T is the total number of time steps. 
 As shown in Fig. 3, the LRPF forecasts are superior to the EnSRF forecasts and the 
deterministic modelling cases in both simulation periods. NSE scores of the LRPF are higher than 
0.87 even if the forecast lead time reaches 24 h, which shows that state updating via LRPF 
reproduces the measurement state variable properly and the effects of updating are still valid even 
24 h later. While the LRPF shows the highest scores in short lead times, the accuracy of the 
EnSRF is not improved in short lead times and shows a nearly flat shape within a 12-h lead time. 
The limited performance of the EnSRF seems to be related to the short interval of updating. The 
ensemble Kalman filter updates state variables directly using linear updating rules based on 
covariance information of model states and observations. One-hour frequency of updating may be 
too frequent to estimate correct soil moisture states using streamflow observations because the 
response time is usually larger than that.  
 Figures 4 and 5 illustrate 6-h lead forecasts via the EnSRF and the LRPF compared to 
deterministic cases for selected events among simulation periods. The mean of forecasted 
streamflow via the LRPF shows good conformity between observation and simulation, while 
deterministic modelling shows significant underestimation, especially in high flood. The mean of 
the EnSRF shows unstable fluctuations and large variations compared to streamflow observations. 
Confidence intervals also show different characteristics in both filters. The LRPF has stable and 
narrow confidence interval, while those of the EnSRF increase very sharply during flood events. 
As shown in Fig. 5(a), confidence intervals of the EnSRF increase very sharply between 1070 and  
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Fig. 4 Observed versus 6-h lead forecasts at the Katsura station via the EnSRF and the LRPF (11 to 17 
July 2007). The solid lines and area represent the mean value and 90% confidence intervals, 
respectively. The dashed lines represent deterministic modelling cases. The dots represent observed 
discharge. 

 
 

 
 

 
Fig. 5 Observed versus 6-h lead forecasts at the Katsura station via the EnSRF and the LRPF (8–19 
August 2003). The solid lines and area represent the mean value and 90% confidence intervals, 
respectively. The dashed lines represent deterministic modelling cases. The dots represent observed 
discharge. 
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1090 hours, even when rainfall events stop. In the case of the LRPF, a lag-time window, which 
calculates an analysis from several previous time steps, is adopted. This lagged analysis step of the 
LRPF seems to contribute to enhancement of forecasting accuracy. Another advantage of the 
particle filters is that all information in an ensemble is duplicated in the resampling step or the 
regularization step, which reduces numerical instability and increases forecasting accuracy. 
 
 
CONCLUSIONS 

The ensemble square root filter and the lagged regularized particle filter were implemented for 
flood forecasting using a distributed hydrologic model, WEP. The distributed soil moisture state 
was perturbed and assimilated with observed streamflow discharges every hour in both filters. 
Two data assimilation methods were also effectively parallelized and implemented in the 
multicore computing environment via the MPI library. Forecasts based on updated results were 
assessed for various lead times up to 24 h using Nash-Sutcliffe efficiency. The LRPF showed 
improved forecasts compared to the EnSRF and deterministic modelling in most data periods and 
forecast lead times. Updating effects via the LRPF lasted more than 24 h, while the EnSRF 
showed limited improvements, especially in short forecast lead times. In terms of probabilistic 
adequacy, confidence intervals of the LRPF showed stable bands, while those of the EnSRF 
increased during flood events and showed diffuse patterns. Alternatively, introduction of a lag-
time window for the EnKF may improve performance. Sequential data assimilation has significant 
potential for high nonlinearity problems, especially for process-based distributed models, and the 
LRPF is expected to be used as one of the frameworks for sequential data assimilation of process-
based distributed hydrological models. 
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