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This paper illustrates a statistical downscaling technique considering the spatial correlation structure 

of precipitation. Downscaling target is 60-km resolution of daily precipitation for 20-km resolution data. 

We have considered a window having (3x60-km)x(3x60-km) of area, and the downscaling target is the 

3x3 of 20-km resolution grids in the center of the downscaling window. For the evaluation of the 

proposed method, we have prepared 15 years (1979-1993) of observation data, and identify the 

parameters with the square root information filter scheme. We optimize the parameters on a monthly 

basis, and apply the regression model to 10 more years of testing period (1994-2004). The proposed 

regression model provides very effective and efficient results with a certain level of estimation error. 
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1. INTRODUCTION 
 

The downscaling issue has been taking an 

important role to bridge research in climate change 

and impact assessment
1),2)

. Though many general 

circulation models (GCMs) have been developed 

and improved for the last several decades, their 

output is still too coarse for local impact assessment 

research. For example, many GCMs in the recent 

CMIP5
3)

 (Coupled Model Inter-comparison Project, 

phase 5) provide spatial resolution that is larger than 

100-km in longitudinal grid space at 35°N. 

In the meantime, Japan Meteorological Agency 

(JMA) and the Meteorological Research Institute 

(MRI) of Japan has developed a couple of 

Atmospheric General Circulation Models (AGCMs) 

with 20-km and 60-km spatial resolutions
4)

, within 

two nationwide climate change research projects, 

Kakushin (FY2007 - FY2011) and Sousei (FY2012 

- FY2016 planned) Projects. Though these models 

focus on atmospheric simulation only, because of 

their ultra-fine resolution in the global sense, the 

20-km AGCM has provided only two sets of output 

so far. (The ongoing Sousei project may produce 

more.) On the other hands, the rather coarse 

resolution of 60-km AGCM provides 24 sets of 

output with variant boundary conditions and model 

parameters, which gives us a glimpse of the 

uncertain future of climate projection
5)

. The 20-km 

AGCM output is able to provide reliable hydrologic 

impact assessment results in the major river basins 

of Japan
6),7)

. The goal of our research is to develop a 

simple yet efficient statistical downscaling (SDS) 

method to downscale 60-km AGCM output into 

20-km resolution for the precipitation data.  

The SDS issue has a long history of research and 

development in the field of hydrology
1)

 and several 

types of SDS methods are already successful in 

other applications, such as SDSM
8)

. Basic categories 

of SDS include regression models (e.g. canonical 

correlation analysis by Schmidli et. al.
9)

), weather 

generators (e.g. Markov chain model by Wilks
10)

) 

and weather typing schemes (e.g. cluster analysis by 

Fowler et. al.
11)

).  

The main advantage of SDS compared to DDS 

(dynamic downscaling) is that it does not take high 

computing resources, and can easily apply to any 

place with a minimum of observation data 

available
12)

. Even though the DDS method with a 

regional climate model (RCM) provides stable and 

reasonable output based on physical backgrounds, 

RCMs demand many computing resources, 



 

 

additional information, and difficult initial setup
13)

. 

However, SDS also has limitations. Some 

statistical relationships between model variables are 

not strong enough to build a stable SDS model
12)

. 

Most critically, we can not sure whether the 

statistical relationship developed with the present 

climate data can simulate the statistical relationship 

of the future climate. We do not have future data 

with which to evaluate the present statistical 

relationship or to establish the correct future one. 

We have been developing an SDS method that 

can avoid the critical issue of the conventional SDS 

method and take as many advantages of DDS as 

possible, based on analyzing two different spatial 

resolutions of AGCM outputs, 20-km and 60-km. 

By establishing a statistical relationship between the 

60-km and 20-km output for both present and future 

separately, and by applying the relationship to the 

ensemble output of 60-km AGCM, it can produce 

ensemble output at 20-km spatial resolution.  

In this paper, we introduce an SDS method with 

the basic concept and evaluation results with the 

observed precipitation data, before it is applied to 

the AGCM output. Section 2 describes the basic 

concept of the proposed methodology and the data 

used in the experiments. Section 3 introduces the 

developed SDS method. Section 4 provides the 

results and related discussions. The last section 

concludes this paper with prospective application 

method to the 60-km AGCM output directly.  

 

2. METHODOLOGY 
 

 The utilized observation data in this study is the 

gridded daily precipitation data of Japan, APHR_JP. 

The original spatial resolution of the data is 0.05 

degrees in both longitude and latitude, and it was 

up-scaled into 0.2 degrees (around 20 km) and again 

into 0.6 degrees (around 60 km). 

 
Fig. 1 Location map of the sample data. Each region is 

composed of 9x9 grids of 0.2 degrees (around 20-km). 

 
 

Fig. 2 Schematics of the downscaling target (20-km; r1 

… r9) using the surrounded grids (60-km; R1 … R9). 

 

 
 

Fig. 3 Spatial correlation of the 9 grids (20-km) in the 

center with the surrounded grids (60-km) in the case of 

April and August of the region B in the Fig. 1. The 

correlation values are based on 25 years of observation 

(1979-2003). 

 

We selected three representative regions to test 

the proposed method (Fig. 1). Each region is 

composed of 9x9 grids with 20-km resolution for 

each grid, or in other words, 3x3 grids with 60-km 

resolution (see Fig. 2). The target of downscaling is 

the center of the subject regions. 

The basic concept of the developed downscaling 

method is to consider the spatial correlation pattern 

of precipitation, and to estimate the amount of a 

certain 20-km gridded precipitation (for example, r1 

in Fig. 2) based on its relationship with the 

surrounding 60-km gridded precipitation amount 

(for example, R1, R2 … R9 in Fig. 2). To validate the 

basic concept of the method, we checked spatial 

correlation of rk (k=1…9) with the surrounding Rk 

(k=1…9) (result from region B is shown in Fig. 3). 

Here, spatial correlation means the correlation of 

daily time series of precipitation.  

As shown, rk (k=1…9) correlates most strongly 

with R5, which covers its own area, then with 

adjacent grids with certain tendencies. In region B, 

South-East directions show higher correlation than 

North-West directions, and the April precipitation 

pattern shows higher spatial correlation than the 

August one. These tendencies reflect regional, 

seasonal, and topographic characteristics, which 

would be sophisticated and variant in many cases. 



 

 

Rather than analyzing the tendencies directly, we 

are focusing on generalizing a relationship that 

naturally includes the variant spatial correlation 

pattern and thus can easily apply to different regions 

with the same format.  

 

3. FORMATTED REGRESSION FRAME  

 

Considering the correlation of precipitation, we 

can estimate daily precipitation amount rk,i on a 

certain 20-km grid k, on a certain day i, using the 

surrounding 60-km gridded precipitation amount 

R1,i, R2,i … R9,i and a multi-variable regression 

equation like Eq. 1. 

rk,i = Ck,1R1,i + Ck,2R2,i + … + Ck,9R9,i + Ɛk,i  (1) 
 

Here, Ck,1… Ck,9 are the regression coefficients for the 

target grid k, and Ɛk,i is the regression residual. To 

estimate the regression coefficients, we can gather n 

days of data and reformulate the equations as a matrix, 

as shown in Eq. 2 or simple form as Eq. 3. 
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vAxZ      (3) 

 

Here, Z is the matrix with the n days of rk values, A is 

the matrix with the n days of R1…9, x represents the 

regression coefficient C1…9, and v is the residuals. 
Our remaining job is to estimate the x that is 

minimizing v, and it can be rewritten as Eq. 4, which is 

a typical form of the square root information filter 

(SRIF). 
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We estimated regression coefficients (or 

parameters) on a monthly basis using the household 

transformation technique on the calculation matrix 

for the observation data of 15 years (1979-1993), 

and the developed regression model was applied for 

the other 10 years of data from 1994 to 2003.  

The efficiency of the parameters estimation was 

checking with the root mean square error (RMSE), 

and the RMSE was calculated including 0 mm/day 

value. Table 1 summarizes some of the efficiency 

values from region B, and shows successful 

estimation results with very small RMSE values. 

The most centered grid, r5, generally shows the best 

results for every month and every region (see the 

bolded number in the Table 1).  

The summer season, especially August, shows 

poorer efficiency than the rest of the year. But even 

in August, we successfully estimated the parameter, 

as all nine grids averaged RMSE of 0.26 mm/day 

for region A, 0.35 for region B, and 0.17 for region 

C. In the case of correlation coefficients (CC), every 

region shows very high correlation, even in August, 

as the 9 grids averaged CC of 0.95 for region A, 

0.94 for region B, and 0.98 for the region C. 
 

Table 1. Estimation efficiency of the Region B 

 RMSE (unit: mm/day) 

Grids April June August October 

r1 0.10 0.11 0.31 0.09 

r2 0.19 0.21 0.55 0.19 

r3 0.10 0.15 0.41 0.16 

r4 0.08 0.15 0.33 0.09 

r5 0.04 0.08 0.23 0.05 

r6 0.10 0.12 0.34 0.09 

r7 0.09 0.14 0.35 0.09 

r8 0.13 0.17 0.31 0.13 

r9 0.10 0.15 0.27 0.12 

MMP* 109 179 265 146 

*Monthly Mean Precipitation (MMP; mm) of the R5 

grid for the 25 years is shown in the table to 

consider the relative magnitude of the RMSE values.     

 

 

4. RESULTS AND DISCUSSIONS 
 

We evaluated the regression model on its 
applicability with the validation period of 
1994-2004 by comparing simulated (downscaled) 
results with observed (true) values, both directly and 
by statistical characteristics.  

 

Table 2. Simulation efficiency of the Region B 

 RMSE (unit: mm/day) 

Grids April June August October 

r1 1.81 2.01 5.55 1.63 

r2 3.33 3.74 9.63 3.32 

r3 1.76 2.73 7.29 2.83 

r4 1.50 2.73 5.91 1.64 

r5 0.78 1.37 4.11 0.86 

r6 1.83 2.09 5.92 1.62 

r7 1.62 2.45 6.09 1.56 

r8 2.30 2.92 5.49 2.22 

r9 1.83 2.74 4.80 2.04 

MMP* 109 179 265 146 

* Monthly Mean Precipitation (MMP; mm) is shown 

as the Table 1.    



 

 

 

 
 
Fig. 4 Scatter plot of simulated 20-km daily precipitation 

compared with true values for region B, r5 (the center 
grid) for April (top), which is one of the best results, and 
August (bottom), which is one of the worst results. 

 
Figure 4 shows the representative results for 

region B, r5 (the most centered grid) for April and 
August. In the figure, results for April shows quite 
successful results with 0.78 mm/day of RMSE, and 
the results from the August show rather dispersed 
pattern (RMSE: 4.11 mm/day).  

Table 2 and Fig. 5 show summarized results for 
other seasons and regions. Table 2 shows the 
representative RMSE from the region B with the 
variation of each grid. In Table 2, the most centered 
grid shows the best results for every month, but 
region A of Figure 5 trends differently. Efficiency 
of the regression model introduced here is largely 
affected by correlation with the adjacent area’s 
precipitation pattern. Some grids or regions might 
have a good pattern relationship with the 
precipitation of surrounding areas, making the 
regression model work better for them than others, 
due to particular topographic shape and/or 
atmospheric behavior of the region, and vice versa. 
 

 

 

 
 

Fig. 5 RMSE of the SDS results for the observed values 

for the region A (top), B (middle) and C (bottom). 
 
August shows the worst results in most cases. 

One reason for this is the poor spatial correlation of 
this month as shown in Fig. 3 (right). Another is the 
large amount of precipitation in August, which is in 
the middle of summer in Japan. As shown in Table 
2, the RMSE magnitude is correlated with the 
monthly precipitation amount. Lastly, the pattern of 
the RMSE from the simulated results (Table 2) is 
very similar to the pattern of the parameter 
estimation efficiency (Table 1). In other words, the 
simulation efficiency in RMSE can be imagined 
with the parameter estimation efficiency.  

In this study, we have developed an SDS method 
to downscale 60-km precipitation information into 
20-km resolution on a daily basis. Simulation results 
do not need to match observation values perfectly. If 
they are good enough to show the statistical 
characteristics of the observation, we can approve 
the proposed regression model. To evaluate these 
statistical characteristics, we have checked the 
frequency of rainfall intensity with histograms (Fig. 
6), and error percentage of monthly precipitation 
amount (Fig. 7). The rainfall intensity interval in 
Figure 6 is basically 2 mm/day except for the first 
bar of the histogram with the percentage of the 0 
mm precipitation amount.  

 

Region A 

 

 

 

 

 

Region B 

 

 

 

 

 

Region C 



 

 

 

 
 

Fig. 6 Histogram of the SDS 20-km daily precipitation 
amount comparing with the true values, for region B, r5 
(the center grid) for April (top) and August (bottom). 
Note that the first bar is the frequency of 0 mm/day, and 
the others are the frequencies of each 2 mm/day interval.  

 

In Figure 6, the results from August show a very 
good match with observed rainfall intensities in 
terms of frequency, and the results from April also 
shows good match except for frequencies lower than 
2 mm/day. This is an encouraging result, but the 
discrepancy of frequency under 2mm/day can make 
a significant difference in accumulated values over a 
long duration of simulation. Thus, we surveyed the 
error ratio of monthly precipitation and summarized 
the results (Fig. 7). For a downscaled grid i, for a 
certain month j, the error ratio Eij is 
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where, Sij is the simulated monthly precipitation 
amount and Oij is the observed one, during the 
examination periods (1994-2003). 

The normalized error ratio with the monthly 
precipitation amount does not depend on season or 
month, and most of it is within ±10%. More 
specifically, the error ratio Eij is showing a normal 
distribution around zero and the standard deviations 
are 4.4%, 5.4% and 5.1% for regions A, B and C, 
respectively. Surely there is much room for 
improvement, but this is a plausible result when we 
consider the simplicity of the proposed method. 

 

 

 

 
 

Fig. 7 Error percentage of monthly precipitation amounts 

for the region A (up), B (middle) and C (down).  

 
Finally, representation of spatial pattern was 

evaluated with correlation of the simulated monthly 
mean precipitation with the observed one in the 
downscaled 9 grids. As shown in Table 3, the spatial 
pattern is successfully well represented in the 
downscaled results with high correlation coefficient.  
 

Table 3. Correlation coefficients of simulated 

monthly mean precipi. with the observation 

Month Region A Region B Region C 

Jan. 0.828 0.998 0.925 
Feb. 0.912 0.993 0.929 
Mar. 0.992 0.995 0.959 
Apr. 0.944 0.984 0.976 
May. 0.973 0.983 0.988 
Jun. 0.963 0.964 0.941 
Jul. 0.955 0.917 0.946 
Aug. 0.944 0.963 0.981 
Sep. 0.964 0.989 0.970 
Oct. 0.973 0.978 0.974 
Nov. 0.971 0.982 0.940 
Dec. 0.932 0.985 0.963 

Region A 

 

 

 

 

 

 

Region B 

 

 

 

 

 

Region C 



 

 

5. SUMMARY AND 

FURTHER RESEARCHES 
 

An SDS technique is proposed with a formalized 
regression frame considering spatial correlation 
structure of precipitation. Downscaling windows in 
a 3x3 60-km grid were considered to downscale the 
centered 60-km grid into 9 grids of 20-km spatial 
resolution. For the evaluation of the proposed 
method, we used 25 years of gridded observation 
data to calibrate regression model parameters 
(1979-1993) and evaluate downscaled results 
(1994-2004). We optimized the parameters on 
monthly basis, and found that the regression model 
provides very effective and efficient results except 
for the summer season in terms of root mean square 
error. However, statistical characteristics, such as 
the frequencies of rainfall intensities, show stable 
patterns for every season and region, with a certain 
level of mismatch. Overall there was around ±5% 
margin of error in the monthly precipitation amount. 

The proposed SDS technique can be applied to 
the 60-km AGCM of MRI (officially, MRI-AGCM 
3.1H & 3.2H) to downscale it into 20-km spatial 
resolution based on the analysis of the original 
20-km resolution AGCM (MRI-AGCM3.1S & 
3.2S). Application method can be 1) upscaling the 
original 20-km AGCM output into 60-km 
resolution, 2) estimating the regression parameters 
for both the present and future climate using the 
original 20-km one and the upscaled 60-km one, 3) 
applying the estimated parameters to the original 
60-km ensemble output from the MRI-AGCM3.1H 
& 3.2H and downscaling them. 

However, statistical characteristics and spatial 
pattern can differ between the original 60-km 
AGCM output and the upscaled one from the 20-km 
AGCM output. One simple solution is to modify the 
original 60-km data to have the characteristics of the 
upscaled one. In this case, we need an additional 
consideration while we handle the ensemble output 
of the 60-km AGCM: to preserve the original 
ensemble characteristics. 

Secondly, a certain estimation bias from the 
proposed SDS method should be carefully 
considered. This may not be avoidable, however, 
information about the bias range and amount should 
be checked before it is applied to the secondary 
usage such as for impact assessment research.  

For more generalized application of the proposed 
method, we are now considering some variation of 
the method. For example, the SDS method 
illustrated here can be modified to apply to different 
spatial and different temporal resolution of data. The 
downscaling window (3x3) can be modified for 
other dimensions, such as (5x5). Finally, the 
proposed method should be evaluated for its 
applicability to different regions and different 
climate conditions. 
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