
Yodo-gawa

Map of River

Table of Basic Data

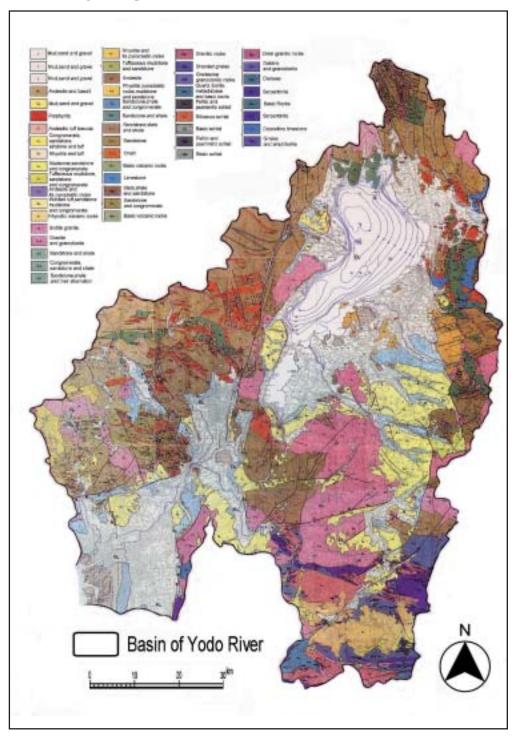
Name: Yodo-gawa		Serial No.: Japan-12						
Location: Honshu, Japan	Honshu, Japan N 34° 24' ~ 35° 44' E 135° 19' ~ 136° 29'							
Area: 8,240 km ²	Length of main stream: 75 l	ĸm						
Origin: Lake Biwa	Highest point: Mt. Ibuki (1,3	777 m)						
Outlet: Osaka Bay Lowest point: River Mouth (0 m)								
Main geological features: andesite, tuff, granite	, schist							
Main tributaries: Uji River (506 km²), Katsura River (1,100 km²), Kizu River (1,596 km²)								
Main lakes: Lake Biwa (670 km²)								
Main reservoirs: Takayama (49.2 x 10 ⁶ m³, 1969) Nunome (15.4 x 10 ⁶ m³, 1992), Hitokura (30.8 x 10 ⁶ m³, 1983)								
Mean annual precipitation: 1387.8 mm (1976 -	~ 2000) at Hirakata							
Mean annual runoff: 270.8 m³/s (1952 ~ 1998) at Hirakata								
Population: 10,630,000 (1994)	Main cities: Kyoto, Osaka, C	Otsu						
Land use: Mountainous area (71.9%), Flat area ((28.1%)							

1. General Description

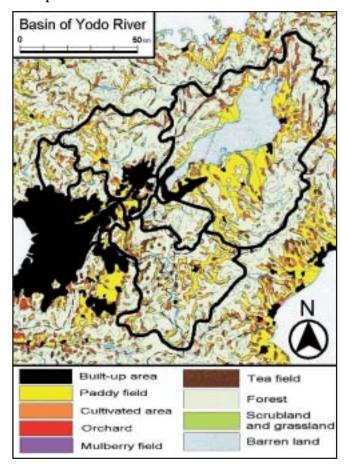
The 75 km long Yodo River (Yodo-gawa) system, located in the central part of Japan, is the seventh largest river basin in Japan with a catchment area of 8,240 km². Flowing south out of Lake Biwa, the largest lake in Japan, first as the Seta River and then the Uji River, it merges with the Kizu and Katsura Rivers near the border between Kyoto and Osaka Prefectures. The Yodo River runs through the heartland of the Kinki region and flows into Osaka Bay.

The Yodo River basin consists of six sub-catchments, which are the Lake Biwa basin (3,802 km²), the Uji River basin (506 km²), the Kizu River basin (1,647 km²), the Katsura River basin (1,152 km²), the lower Yodo River basin (521 km²) and the Kanzaki River basin (612 km²). It extends over the six prefectures of Shiga, Kyoto, Osaka, Hyogo, Nara and Mie.

City areas spread throughout the basin. Metropolitan areas such as Osaka, Kyoto, and Otsu are located along the rivers. The population of the basin is about 10,630,000, which is 9% of the population of Japan and 53% of that in the Kansai region. In the lower Yodo River basin, most of the heavily populated urban developments are located in areas lower than the river water level. In Osaka City, it is estimated that 94.9% of the total metropolitan area is located in flood-prone areas.


Precipitation in the basin is widely distributed in time and space. The annual precipitation of the Lake Biwa, Katsura River, Kizu River, and the lower Yodo River basins are about 1,880 mm, 1,640 mm, 1,590 mm, and 1,400 mm respectively. The mean annual precipitation of the whole Yodo River basin is about 1,600 mm.

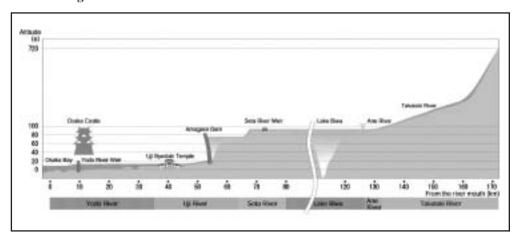
The Lake Biwa basin, the Katsura River basin, and the Kizu River basin have high flows in the snow melt season from March to April, the rainy season from June to July, and the typhoon season from September to October, respectively.


Due to the time and space dispersion of high flows in tributaries and the large storage capacity of Lake Biwa, the river flow conditions are more stable than those of other Japanese basins.

2. Geographical Information

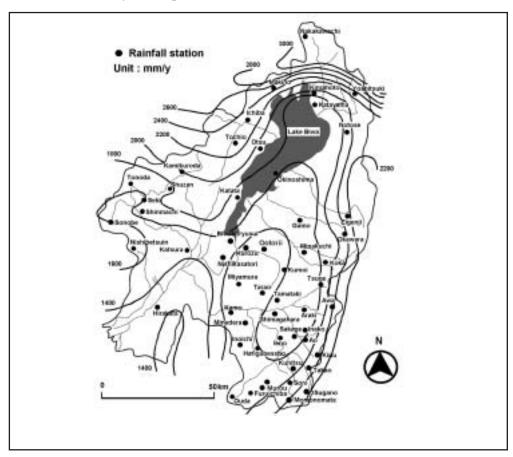
2.1 Geological Map

2.2 Land Use Map



2.3 Characteristics of River and Main Tributaries

No.	Name of river	Length [km] Catchment area [km²]	Highest peak [m] Lowest point [m]	Cities population	Land use [%]
1	Yodo (Main river)	37 231	Sekidougaoka 680 River mouth 0	Osaka 2,607,700	
2	Biwa (Lake)	3,802	Mt. Ibuki 1,377 Outlet 80.8	Otsu 289,601	
3	Uji (Tributary)	38 506	Mt. Shubu 681 Confluence 19.0	Uji 191,122	M 71.9
4	Katsura (Tributary)	114 1,100	Mt. Jizou 948 Confluence 17.7	Kyoto 1,467,521	F 28.1
5	Kizu (Tributary)	99 1,596	Mt. Kuroso 1,038 Confluence 15.8	Ueno 59,765	
6	Kanzaki (Tributary)	13 612	Mt. Keno 785 River mouth 0	Osaka 2,607,700	


M: Mountainous area F: Flat area

2.4 Longitudinal Profiles

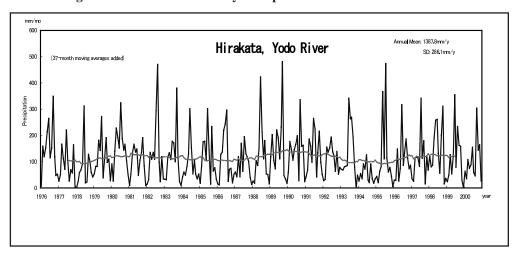
3. Climatological Information

3.1 Annual Isohyetal Map and Observation Stations

List of Meteorological Observation Stations¹⁾ 3.2

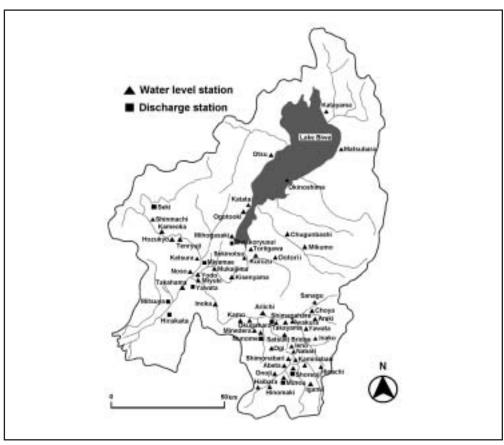
No.2)	Station	Elevation [m]	Location	Observation period	Mean annual precipitation [mm]	Observation items ³⁾	
60051	Imazu	88	N 35° 24' 36" E 136° 01' 54"	1974 ~ present	1,829.7 1989 ~ 1998	DS, P, T, W	
60131	Hikone	87	N 35° 16' 24" E 136° 14' 48"	1974 ~ present	1,608.8 1989 ~ 1998	DS, P, T, W	
60216	Otsu	86	N 34° 59' 18" E 135° 54' 54"	1977 ~ present	1,659.7 1989 ~ 1998	DS, P, T, W	
53112	Ueno	159	N 34° 45' 30" E 136° 08' 56"	1985 ~ present	1,480.0 1989 ~ 1998	DS, P, T, W	
61271	Sonobe	195	N 35° 03' 12" E 135° 27' 30"	1974 ~ present	1,650.4 1989 ~ 1998	DS, P, T, W	
61286	Kyoto	41	N 35° 00' 42" E 135° 44' 06"	1974 ~ present	1,565.9 1989 ~ 1998	DS, P, T, W	
62051	Toyonaka	9	N 34° 46' 24" E 135° 26' 54"	1974 ~ present	1,378.2 1989 ~ 1998	DS, P, T, W	
62046	Hirakata	26	N 34° 48' 18" E 135° 40' 36"	1975 ~ present	1,453.2 1989 ~ 1998	DS, P, T, W	

^{1) 30} rainfall observation stations managed by Japan Meteorological Agency and 27 managed by Ministry of Land, Infrastructure and Transport are operated in the Yodo River basin. Only some of the stations are listed here.


2) Serial Number used by Japan Meteorological Agency.

3) DS: Duration of sunshine, P: Precipitation, T: Air temperature, W: Wind velocity and wind direction.

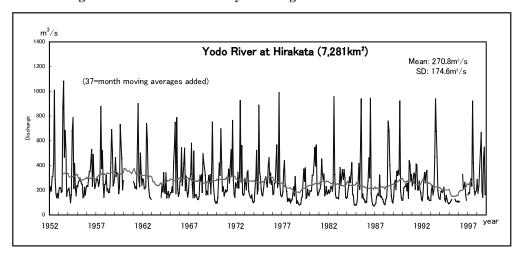
Monthly Climate Data (Observation station: Osaka) 3.3


Observation item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Period for the mean
Temperature [°C]	5.8	5.9	9.0	14.8	19.4	23.2	27.2	28.4	24.4	18.7	13.2	8.3	16.5	1971~2000
Precipitation [mm]	43.7	58.7	99.5	121.1	139.6	201.0	155.4	99.0	174.9	109.3	66.3	37.7	1036.1	1971~2000
Solar radiation [MJ/m²/day]	7.4	9.2	11.8	15.0	16.9	15.2	16.6	16.6	12.6	10.5	8.1	6.9	12.3	1971~2000
Duration of sunshine [hr]	142	131	158	183	200	150	186	211	149	162	147	149	1967	1971~2000

3.4 Long-term Variation of Monthly Precipitation

4. Hydrological Information

4.1 Map of Streamflow Observation Stations


4.2 List of Hydrological Observation Stations¹⁾

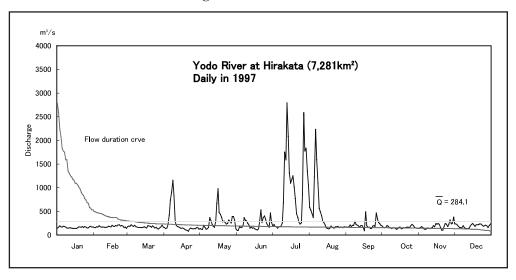
No. ²⁾	Station	Location	Catchment Location area (A) [km²]		Observation items ³⁾ (frequency)
60465	Kamo	66.5 km from the river mouth	1,456.0	1898 ~ present	H, Q
60503	Shinmachi	77.9 km from the river mouth	540.0	1956 ~ present	H, Q
60582	Gunkoubashi	15.8 km from the river mouth	322.8	1954 ~ present	H, Q
60532	Hirakata	25.9 km from the river mouth	7,281.0	1955 ~ present	H, Q

No. 2)	Q ⁴⁾ [m ³ /s]	Qmax ⁵⁾ [m ³ /s]	Qmax ⁶⁾ [m ³ /s]	Qmin ⁷⁾ [m ³ /s]			Period of statistics
60465	45.56	6,200.00	1,610.31	7.13	3.13	425.82	1938 ~ 1996
60503	18.04	1,704.40	679.56	0.71	3.34	315.63	1969 ~ 1997
60582	8.53	1,571.70	613.19	0.26	2.64	486.90	1955 ~ 1996
60532	272.05	7,970.00	3,177.59	91.05	3.74	109.46	1952 ~ 1977

^{1) 53} water stage stations and 9 discharge stations are operated in the Yodo River basin.

4.3 Long-term Variation of Monthly Discharge

²⁾ Serial Number used by Ministry of Land, Infrastructure and Transport


³⁾ H: water level, Q: discharge, Q is obtained from rating curve.

⁵⁾ Q max : Maximum discharge7) Q min: Mean minimum discharge

⁴⁾ Q: Mean annual discharge

⁶⁾ Q: max: Mean maximum discharge

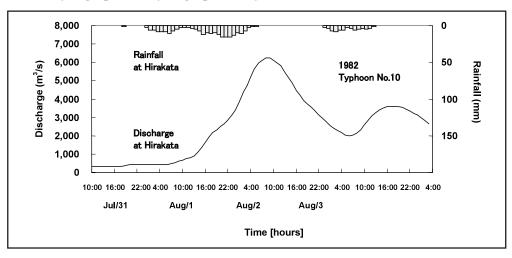
4.4 Annual Pattern of Discharge

4.5 Unique Hydrological Features

The Yodo River basin includes Lake Biwa, which is the largest fresh-water lake in Japan with an area of about 670 km² and a storage capacity of 27.5 billion m³. The catchment area of Lake Biwa is 3,848 km², which accounts for 47% of the Yodo River basin. Water flows into Lake Biwa from more than one hundred rivers before being discharged into the Seta River, which is the only natural outflow river from the lake.

Lake Biwa plays an important role as a regulating reservoir for flood control. In the case of flooding of the main Yodo River, the Setagawa Weir, located at the outlet of Lake Biwa, is controlled to reduce flows to the lower basin.

Lake Biwa also has a role as the water source for the 13 million people in Kansai region. When severe drought occurs, the downstream water users, the Central Government, and relevant local governments convene a task force that coordinates drought mitigation measures. The minimum water needed by downstream areas is discharged from Lake Biwa.


4.6 Annual Maximum and Minimum Discharges

Station: Hirakata [7,281 km²]

*7	Maxi	mum ¹⁾	Mini	mum ²⁾	*7	Maxi	mum ¹⁾	Mini	mum ²⁾
Year	Date	$[m^3/s]$	Date	$[m^3/s]$	Year	Date	$[m^3/s]$	Date	[m ³ /s]
1952	6.24	4,200	8.27	80.0	1976	9.11	3,391	2.16	103.4
1953	9.25	7,800	1.3	104.0	1977	3.31	1,567	10.30	75.5
1954	7.6	3,540	4.11	74.0	1978	6.24	2,406	10.27	65.6
1955	10.21	1,124	5.11	94.8	1979	6.29	2,281	1.25	70.5
1956	9.27	5,025	8.21	134.0	1980	7.11	1,690	11.21	112.1
1957	6.28	2,740	4.19	93.6	1981	10.9	1,378	8.20	106.8
1958	8.26	3,990	3.26	95.0	1982	8.2	6,271	7.6	103.4
1959	9.27	7,970	6.19	119.3	1983	9.29	3,750	6.12	99.9
1960	8.30	3,775	_*	115.0	1984	6.27	1,960	11.12	58.3
1961	10.28	7,206	9.14	97.8	1985	6.26	2,669	2.8	73.5
1962	8.26	2,615	12.28	103.2	1986	7.22	4,091	12.14	59.0
1963	5.18	1,801	11.29	101.1	1987	7.20	1,436	1.12	61.4
1964	7.20	955	8.21	94.3	1988	6.3	2,388	1.21	65.9
1965	9.18	6,868	8.31	93.1	1989	9.3	3,599	1.6	96.6
1966	7.2	2,442	11.13	113.1	1990	9.20	3,949	9.11	89.3
1967	7.10	3,077	6.22	95.7	1991	_*	_*	_*	_*
1968	8.30	1,702	2.5	93.7	1992	8.20	2,308	8.17	58.1
1969	7.9	2,064	12.22	81.0	1993	7.5	4,104	4.24	74.9
1970	6.16	2,638	1.26	73.5	1994	9.30	2,753	9.14	60.8
1971	9.7	2,096	11.26	112.0	1995	5.12	4,760	11.26	73.7
1972	9.17	5,228	10.30	110.7	1996	8.29	1,627	1.21	75.4
1973	5.2	1,114	8.13	75.5	1997	7.27	3,835	6.20	42.5
1974	7.25	2,744	1.5	93.1	1998	10.17	2,348	9.3	66.5
1975	8.23	2,774	1.13	94.8	1999	6.30	3,811	10.25	107.1

^{1), 2)} Instantaneous observation by recording chart

4.7 Hyetograph and Hydrograph of Major Flood

^{*} missing data

5. Water Resources

5.1 General Description

The water of the Yodo River was mainly used for agricultural water and transportation services in the past. The first water utilization canal from Lake Biwa to the Kyoto City area (the Lake Biwa Canal) was constructed in 1890 and the water was used for various purposes including the nation's first hydroelectric power generation, transportation, irrigation and public water supply. In 1912, the second water utilization canal was completed aimed at expansion of the public water supply and power generation. In the Uji River, hydroelectric power generation was developed, and the Uji power generation plant was built.

After that, the first phase of the Yodo River Water Control Works was implemented to cope with the increasing demand for water needed for the development of an industrial economy, and the water utilization started through the regulation of the water level in Lake Biwa.

In 1962 the Water Resources Development Promotion Law of Japan was used to give the Yodo River system a special designation that has since allowed various projects to be implemented. Now eight dams and two river weirs are operated for the prevention of flood disasters and for the water resources needs of the 13 million people living in the Kansai area.

5.2 Map of Water Resource Systems


5.3 **List of Major Water Resources Facilities**

Major Reservoirs

Name of river	Name of dam (reservoir)	Catchment area [km²]	Gross capacity [10 ⁶ m ³]	Effective capacity [10 ⁶ m ³]	Purpose ¹⁾	Year of completion
Nunome	Nunome	75	17.3	15.4	F, N, W	1992
Nabari	Hinachi	76	20.8	18.4	F, N, P, W	1999
Nabari	Takayama	615	56.8	49.2	F, N, P, W	1969
Katsura	Hiyoshi	290	66.0	58.0	F, N, W	1998
Shorenji	Shorenji	100	27.2	23.8	A, F, N, P, W	1970
Uda	Murou	169	16.9	14.3	F, N, W	1974
Ina	Hitokura	115	33.3	30.8	F, N, W	1983

¹⁾ A: Agricultural use

Major Water Transfer

F: Flood control I: Industrial use

N: Maintenance of normal flows

P: Hydro-power

W: Municipal water supply

5.4 **Major Floods and Droughts**

Major Floods

Date	Peak discharge	l	infall [n Duration	-	Meteorological	Dead and	Major damages
Date	at Hirakata [m³/s]	Kizu River	Katsura River	**Uji River	cause	missing	(Districts affected)
1953.	*(8,650)	261	268	265	Typhoon No.13	145	Houses totally destroyed: 2,820 Houses partly destroyed: 7,808
9.25	7,800		2 days		-) [Houses washed away: 517 Houses inundated: 227,577
1956.	4,610	204	137	166	Typhoon No.15	N.A.	N.A.
9.27	1,722		N.A.		- 7, F		
1958.	4,030	210	130	184	Typhoon No.17	N.A.	N.A.
8.27	1,222		N.A.		- 7, F	- 111	
1959. 8.14	6,800	250	305	322	Low pressure front and	23	Houses totally destroyed: 43 Houses partly destroyed: 115 Houses washed away: 109
0.14			3 days		Typhoon No.7		Houses inundated: 47,476
1959.	7,200	296	177	282	Typhoon No.15	1,674	Houses total destroyed: 5,051 Houses partly destroyed: 13,833
9.27	7,200		3 days	ı	(Ise Gulf Typhoon)	1,074	Houses washed away: 1,633 Houses inundated: 137,344
1960.	3,840	129	265	60	Typhoon No.16 and	28	Houses totally destroyed: 47 Houses partly destroyed: 158
8.30	5,616		3 days	ı	Typhoon No.18	20	Houses washed away: 15 Houses inundated: 28,979
1961.	7.000	289	245	209	Low pressure front	4	11 1 1 10 500
10.28	7,800		4 days		and Typhoon No.26	4	Houses inundated: 12,589
1965.	7,300	205	216	206	Typhoon No.24	11	Houses totally destroyed: 97 Houses partly destroyed: 123
9.17	7,300		2 days		1 yphoon 140.24	11	Houses washed away: 2 Houses inundated: 40,268
1972.	5 220	167	159	158	Typhoon No 20	12	Houses totally destroyed: 55 Houses partly destroyed: 605
9.17	5,230		2 days		Typhoon No.20	12	Houses inundated: 78,393
1982.	6,260	312	159	248	Typhoon No.10	49	Houses totally destroyed: 125 Houses partly destroyed: 136
8.2	0,200		2 days		т урноон 110.10	47	Houses washed away: 9 Houses inundated: 50,201
1994.	2,750	178	59	113	Typhoon No.26	N.A.	Houses partly destroyed: 3
9.30	2,730		4 days		1 урноон 10.20	14.74.	Houses inundated: 323
1995.	4,760	181	199	191	Low pressure front	N.A.	Houses inundated: 55
5.12	.,,700		6 days			2 1.2 1.	

^{*} Hypothetical value assuming no damage to the dike.

** Except for the Lake Biwa catchment area.

Major Droughts

Year	Rain			chment are	Lake Biwa Lowest water	Yodo River, Hirakata			
	Jul	Aug	Sept	Oct	Nov	Dec	mark	Lowest flow	
1973	50	116	181	166	71	64	-54 cm	80.9 m ³ / s	
	(21)	(75)	(86)	(127)	(71)	(54)	Sept. 2	Aug. 13	
1977	68	88	165	59	165	141	-58 cm	82.8 m ³ / s	
	(29)	(57)	(79)	(45)	(165)	(119)	Nov. 2	Oct. 30	
1978	41	71	195	83	95	89	-73 cm	73.8 m ³ / s	
	(18)	(46)	(93)	(63)	(95)	(75)	Nov. 29	Nov. 19	
1984	183	57	98	70	45	133	-95 cm	68.4 m ³ / s	
	(78)	(37)	(47)	(53)	(45)	(113)	Jan. 26	Dec. 10	
1986	360	31	95	95	60	133	-88 cm	65.2 m ³ / s	
	(154)	(20)	(45)	(73)	(60)	(113)	Dec. 14	Dec. 7	
1990	176	86	450	168	234	128	-69 cm	73.1 m ³ / s	
	(75)	(55)	(214)	(128)	(234)	(108)	Sept. 12	Aug. 7	
1994	25	65	305	37	53	88	-123 cm	52.7 m ³ / s	
	(11)	(42)	(145)	(28)	(53)	(75)	Sept. 15	Sept. 14	

Year	Water	restriction period	No. of days with	Water rest	riction ratio
rear	l I	Month/Day	restriction	Tap water	Industrial water
1973	1st.	7/31 ~	96	10%	15%
19/3	2nd. 9/4 ~ 1st. 8/25 ~		1	20%	25%
1977	1st.	8/25 ~	134	10%	15%
1978	1st.	9/1 ~	159	10%	15%
1984	1st.	10/9 ~	154	10%	12%
1904	2nd. 11/6 ~	11/6 ~	115	20%	22%
	1st.	10/17 ~ 11/28	56	10%	12%
1986		1/27/87 ~ 2/10/87			
	2nd.	11/28 ~ 1/27/87	60	20%	22%
	1st.	8/22 ~ 9/3	12	10%	10%
	2nd.	9/3 ~ 9/10	9	15%	15%
1994		9/27 ~ 9/29			
	3rd.	9/10 ~ 9/16	14	20%	20%
		9/19 ~ 9/27			

River Water Quality 5.5

River Water Quality¹⁾ at Hirakata-oohashi²⁾ in 2000

Date	1/12	2/2	3/8	4/12	5/10	6/7	7/5	8/2	9/6	10/4	11/8	12/6
pН	7.5	7.4	7.4	7.5	7.8	7.6	7.5	7.7	7.7	7.4	7.4	7.4
BOD [mg/l]	1.6	1.8	1.4	1.4	1.7	0.8	1.2	0.9	1.5	0.9	0.9	0.9
COD _{Mn} [mg/l]	3.6	3.8	3.5	3.5	4	3.5	4.7	3.6	4.2	3.8	3.8	3.4
SS [mg/l]	7	10	11	7.8	4	7	25	4	6	7	7	5
Discharge ³⁾ [m ³ /s]	101	107	132	136	127	200	218	156	116	145	145	122

Observed once a month on a dry day normally several days after rainfall.
 Located near Osaka City 25 km upstream from the river mouth.
 Discharge on the water quality observation date.

Present water quality of the Yodo River

6. Socio-cultural Characteristics

The Yodo River basin contains two large historical cities, Kyoto and Osaka. Kyoto played a central role in the development of Japan's history. The ancient capital was transferred from Nara to Kyoto in 794, which then became the centre of Japanese politics and culture for about 1,100 years until the transfer of the government to Tokyo in 1868. Osaka also fulfilled a vital role as a city of commerce, trade and diplomatic relations with Asian countries.

To support the development of the region, many river works have been conducted. The oldest flood control works in the area date back to the time of Emperor Nintoku (about 320 A.D.). Many flood control works have been performed since then, such as the separation of Ogura pond and the Uji River, the construction of the Bunrokutsutsumi (Bunroku Dike) by Hideyoshi Toyotomi in the 16th century, and the Yamato River redirection works during the first part of the 18th century. In the Meiji Period, western techniques were introduced to Japan by De Lekay, an engineer from Holland, Tadao Okino and others, which brought about the start of modern flood control water works and reformed the Yodo River into a new waterway.

Based on the historical development, this region constitutes the second largest economic bloc after the Tokyo Metropolitan area.

7. References, Databooks and Bibliography

Geographical Survey Institute (1984): The national atlas of Japan, Ministry of Construction.

Biwa Lake Construction Work Office: Seta River Weir (brochure in English), Kinki Regional Construction Bureau, Ministry of Construction, 19pp.

Kinki Regional Bureau: Yodogawa Hyaku-nenn-shi (History of The Yodo River for a hundred years), Ministry of Construction, 1821pp.

River Bureau: Uryo nenphyo (Rainfall Yearbook), Ministry of Land, Infrastructure and Transport.

River Bureau: Ryuryo nenphyo (Stream flow Yearbook), Ministry of Land, Infrastructure and Transport.

River Bureau: Suisitsu nenphyo (River Water Quality Yearbook), Ministry of Land, Infrastructure and Transport.

Yodo River Office: The Yodo River (brochure in English), Kinki Regional Development Bureau, Ministry of Land, Infrastructure and Transport, 10pp.