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Abstract:

In this study, a methodology which is capable of identifying the uncertainty of prediction through recognizing and quantifying
the different sources of uncertainty in hydrologic models is applied for model comparison. The methodology is developed
to recognize and quantify different uncertainty sources through observing hydrologic model behaviour under increasing input
uncertainty levels. Based on the methodology, an index, which originates from the Nash–Sutcliffe efficiency named Model
Structure Indicating Index (MSII) developed by the authors is applied to evaluate the reliability of model structure. A ranking
of the adequacy of the hydrologic models to the watershed can be achieved by applying MSII. The hydrologic models Storage
Function Method (SFM), TOPMODEL and KW-GIUH are used for model quantitative comparison in this study. Of these, a
parameter-constrained SFM is used as an example of a poor-structured model; and two versions of TOPMODEL with different
vertical flux calculation processes are used to demonstrate the behaviour of different model components. The results show that,
at small input uncertainties, no distinction can be made between the capabilities of the hydrologic models to adapt themselves
to error-contaminated data. As the input uncertainty increased, however, the distinction between the models becomes larger
and the accuracy of the model structures could be quantified through MSII. The results prove that the index can be used as a
tool for implementing quantitative model comparison/selection. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

A hydrologic model is an integration of mathemati-
cal descriptions of conceptualized hydrologic processes,
which serves a specific purpose in water resources
engineering. Consequently, the spatial scale, temporal
scale, model structure, architecture, and applicability of
a hydrologic model are restricted by the hypothesis of
the hydrologic model in most of the cases. As a result,
numerous hydrologic models have been developed to
suit various requirements, and the development of new
hydrologic models or the improvement of existent mod-
els continues all over the world. Along with this scenario,
the credibility of model outputs is becoming an important
issue while applying hydrologic models not only for flood
or drought simulations but also for other purposes such
as decision making in relation to hydrological designs.

With rapid advances in computing technology, remote
sensing, GIS and DBMS, the role of hydrologic models
is enhanced as a tool in planning and decision making,
and tends to be incorporated with other process models
such as economic, social, political, administrative, and
judicial. Thus, watershed hydrologic models will become
a component of a larger management strategy. Further-
more, these models will become more global, not only in
the sense of spatial scale but also in the sense of hydro-
logic details (Singh and Woolhiser, 2002). Therefore, a
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methodology for model comparison and evaluation of the
adequacy for adopting hydrologic models for a given pur-
pose is required.

It is doubtless that the performance of a hydrologic
model is highly dependent on the hypothesis of the
model, the data for calibration, the data for simulation
input and the model structure. Underestimating or misun-
derstanding of these factors and the relationships among
them may tremendously mislead the interpretation of the
results of the hydrologic models.

Hydrologists have been interested in the effects of
these factors on the accuracy and reliability of the
estimation of catchment hydrological variables such as
peak flow and flood volume. Some focus on the spatial
and temporal variation in input data (precipitation data or
remote sensing data) and its influence on the runoff (e.g.:
Storm et al., 1988; Lamb et al., 1998; Andreassian et al.,
2001); others focus on the uncertainty of model structure
(e.g.: Singh and Woolhiser, 1976), the uncertainty of
model parameter (e.g.: Spear et al., 1994; Johnson, 1996;
Eckhardt et al., 2003), scale issues (e.g.: Wolock, 1995),
uncertainty propagation (e.g.: Crosetto et al., 2001), or
model validation (e.g.: Klemes, 1986; Bathurst et al.,
2004).

Recent research relating to hydrologic model uncer-
tainty mostly refers to the identification of parameter
uncertainty (e.g.: Uhlenbrook et al., 1999), or parame-
ter calibration (e.g.: Ajami et al., 2004; Eckhardt et al.,
2005) and their impact to simulation results (e.g.: Freer
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et al., 1996; Kuczera and Parent, 1998). Many method-
ologies have also been proposed to identify and anal-
yse the uncertainty of hydrologic simulation, such as
BATEA (Kuczera and Franks, 2002), DYNIA (Wagener
et al., 2003), GLUE (Freer et al., 1996), NLFIT (Kucz-
era, 1983a,b; Kuczera and Parent, 1998; Kuczera, 2004)
etc. Among those, the Generalized Likelihood Uncer-
tainty Estimation (GLUE) methodology offers a path of
identifying parameter uncertainty. Nevertheless, parame-
ter equifinality became the conclusion of GLUE; uncer-
tainty related to input data and other factors are excluded.
These uncertainties could also be included in GLUE but
this has not normally been done (Beven, 2001). The
uncertainty related studies give hydrologists the knowl-
edge about the way in which uncertainty factors impact
on the hydrologic models through observing the way
models respond to them. A methodology or strategy for
hydrologic model comparisons can be viewed as an appli-
cation and extension of such knowledge.

The World Meteorological Organization (WMO) spon-
sored three studies intercomparing watershed hydrologic
models. The first study (WMO, 1975) dealt with concep-
tual models used in hydrologic forecasting. The second
study (WMO, 1986) dealt with an intercomparison of
models that simulate flow rates, including snowmelt. The
third study (WMO, 1992) dealt with models for fore-
casting streamflow in real time (Singh and Woolhiser,
2002). Another joint effort of model intercomparison is
the Distributed Model Intercomparison Project (DMIP),
which was held by the Hydrology Laboratory (HL) of the
US NOAA’s (National Oceanic & Atmospheric Admin-
istration) National Weather Services (NWS). One of the
major goals of DMIP was to understand the capabilities
of existing distributed modelling methods and identify
promising directions for future research and develop-
ment (Reed et al., 2004). For lumped hydrologic models,
Perrin et al. (2001) made an extensive comparative per-
formance assessment of the structures of 19 daily lumped
models by modelling 429 catchments located in France,
the United States, Australia, the Ivory Coast, and Brazil.

It should be noted that the majority of the studies
mentioned above were based on model performance, in
which the model response surface was generated by giv-
ing forcing input data (precipitation, temperature, etc.)
and evaluated by comparing the output with the observed
watershed response data with unknown precision. Subse-
quently, the credibility of the results of model comparison
is questionable. Available literature shows that the sensi-
tivity or performance of a particular model is related to
the spatial or temporal variability of input data, and not
the sensitivity or performance of the actual basin. As a
result, model assessment is a tricky exercise and the con-
clusions from such experiments generally depend on the
methodology of the comparisons and the characteristics
of the test catchment (Perrin et al., 2001).

Almost all hydrologic models are being used under
an unknown magnitude of input uncertainty. There are
numerous studies related to the uncertainty of hydrologic
model and model comparison, a fact, that is, seldom

discussed. It is certain that input errors/uncertainties
propagate and persist in hydrologic models, and corrupt
the parameter estimation processes. The capability of a
hydrologic model to regenerate the watershed response
series from input data containing errors of a known
magnitude is highly related to the model structure. Thus,
the evaluation of the model performance–not only the
model simulation outcomes but also outcomes during
calibration–to different input data errors leads to a better
understanding of the efficiency of the hydrologic model’s
structure.

Based on this idea, a methodology was developed to
recognize and quantify the predicting uncertainty from a
given input uncertainty to perform a hydrologic model
quantitative comparison (Chiang et al., 2005). A ranking
of the adequacy of hydrologic models can be achieved
by observing model behaviours under increasing input
uncertainty. In practice, firstly, the Monte-Carlo sim-
ulation method is applied to add a bias item to the
model input data series (rainfall), then rainfall realiza-
tions, parameter space, and model outcomes (outflow dis-
charge) under different bias levels are acquired. Secondly,
by examining the relationship between model simula-
tion outcomes, calibration outcomes and observed water-
shed response series (discharge), an uncertainty structure
can be recognized. Finally, model structure uncertain-
ties caused by input data uncertainty are recognized
and quantified through an index originating from the
Nash–Sutcliffe efficiency called Model Structure Indi-
cating Index (MSII), which is used as an instrument for
implementing model quantitative comparison/selection.

Three hydrologic model bases are used for model
quantitative comparison in this study. These are Storage
Function Method (SFM) (Kimura, 1961), TOPMODEL
(Beven and Kirkby, 1979) and KW-GIUH (Lee and Yen,
1997). Within these, a parameter-constrained SFM is used
as an example of a poorly structured model, and two
versions of TOPMODEL with different vertical flux cal-
culation processes are used to demonstrate the behaviour
of a different model component. The results show that
within a small magnitude of input uncertainty, there are
no apparent distinctions between the capabilities of the
different hydrologic models to adapt themselves to the
error-contaminated data. With increasing input uncer-
tainty, however, the difference becomes larger and can
be quantified by the index MSII, with a larger value of
MSII indicating a poorly structured model. Finally, the
different behaviours of the different hydrologic models
under differing levels of input uncertainty are discussed
by means of the model structure and catchment charac-
teristics.

UNCERTAINTY QUANTIFICATION IN
HYDROLOGIC MODELS

The performance of hydrologic models is profoundly
affected by sources of uncertainty. In brief, these sources
in hydrologic modelling are the observed data, the data
used for model calibration, and the model structure.
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Figure 1. Schematic diagram of the uncertainty structure defined in the
study. Qo: observed discharge; Qb: a model outcome with the best-fitted
parameter set; Qe: a model outcome with a parameter set within the
whole parameter space. εSU, εEU and εIU are used to acquire system

uncertainty, entire uncertainty and inherent uncertainty respectively

Data uncertainty is the most influential and contami-
nates other sources of uncertainty. Underestimating or
misunderstanding these sources of uncertainty and the
interrelation between them may mislead the interpreta-
tion of the results of the hydrologic models. In this
section, prediction uncertainty sourced from the three
kinds of sources mentioned previously is classified into
four categories: system uncertainty, entire uncertainty,
inherent uncertainty, and structure uncertainty. Figure 1
depicts a schematic diagram of the uncertainty structures.
In Figure 1, εSU, εEU and εIU represent the differences
in hydrographs among those observed, estimated with
a parameter set in the parameter space, and estimated
with the best-fitted parameter set. The system uncertainty,
entire uncertainty and inherent uncertainty are evaluated
using εSU, εEU and εIU in terms of Nash–Sutcliffe effi-
ciency. The definition and the procedure of recognizing
and quantifying the uncertainties are described in the sub-
sequent text.

System uncertainty

A hydrologic model is an approximation of the real
phenomena based on the hydrologic cycle, still it is vital
to stress that there always exits a discrepancy between
model outcome and observed data, no matter how precise
the model is and how perfect the model is calibrated. This
is due to the model’s predicting limitation associated with
the hypothesis and architecture of the model, termed the
system uncertainty in this study.

The system uncertainty can be recognized by evalu-
ating the discrepancies between the observed watershed
response series and the model outcome during the pro-
cess of model parameter calibration. The discrepancy is
supposed to be the minor value by comparison to the
model outcome by using different periods for the forcing
input data. It has often been observed that the goodness-
of-fit between observed data and estimated data during
calibration is better than that in validation, not to men-
tion in implementation. Given this fact, the uncertainty
occurring here denotes the predicting limitation of the
model, since this is the best performance that a model
can achieve. In agreement with this definition, it is clear
that the uncertainty comes from the process of calibra-
tion. The uncertainty source is the calibration data. The

index for quantifying the system uncertainty is defined
as:

SU D 1 �

√√√√ n∑
iD1

�Qoi � Qbi�2

√√√√ n∑
iD1

�Qoi � Qo�2

�1�

where Qo and Qb indicate the observed watershed
response series and model outcome by using the best-
fit parameter set, n is the time step of the time series,
and Qo denotes the time average of the whole observed
watershed response series. SU elucidates the performance
of the best-fitted simulated outcomes.

This is a measure of the model performance during
calibration, denoting the predictive capability of a hydro-
logic model. It has been demonstrated that the model
performance against independent data not used for cali-
bration is generally poorer than the performance achieved
in the calibration situation (Refsgaard and Henriksen,
2004). As a result, the system uncertainty is less than
the entire uncertainty, which is described next.

Entire uncertainty

After calibrating the model parameter, the calibrated
parameter space reflects its variance through the model
structure and propagates through to the response surface.
This uncertainty can be recognized by examining the
discrepancy between the observed watershed response
data and the model outcome by using input data and
parameter sets in the calibrated parameter space. This is
the method used by most of the current research dealing
with parameter sensitivity. This uncertainty is defined as
the entire uncertainty in this study, since, actually, this is
the utmost uncertainty a model could have under existing
input uncertainty. The index for quantifying the entire
uncertainty is:

EU D 1 �

√√√√ n∑
iD1

�Qoi � Qei�2

√√√√ n∑
iD1

�Qoi � Qo�2

�2�

where Qe is the model outcomes acquired by using a
parameter set within the whole parameter space and entire
rainfall realizations.

Inherent uncertainty

The inherent uncertainty represents the variability of
the parameter space, which is determined according
to the input uncertainty. This can be examined by
analysing the discrepancy between model outcomes using
parameter values within parameter space and the outcome
with the best-fit parameter set. Observed data is not
used here, which indicates that the consistency of the
model outcomes generated from the parameter set can
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be observed. The index for quantifying the inherent
uncertainty is defined as:

IU D 1 �

√√√√ n∑
iD1

�Qbi � Qei�2

√√√√ n∑
iD1

�Qbi � Qb�2

�3�

where Qe is calculated with a possible parameter set iden-
tified by other calibrated model outcomes, thus, the dis-
crepancy between Qb and Qe indicates the error inevitable
in a model formulation. The observed watershed response
data is not used here. The outcomes during calibration
are used as criteria to be compared with other outcomes,
which are generated by other parameter sets using rain-
fall realization with the same noise variance as forcing
input data.

Structure uncertainty–model structure indication index
(MSII)

In order to implement a dynamic view of the hydro-
logic model’s behaviour, the relationship among the sys-
tem uncertainty, the entire uncertainty, and the inherent
uncertainty caused by input data uncertainty is used to
formulate a MSII (Chiang et al., 2005) defined as:

MSII D IU � EU

SU
�4�

The difference between the entire and the inherent
uncertainty is used as the numerator in the equation,
while the system uncertainty is used as a denominator.
The numerator is expected to be a smaller value when
the model is more accurately reproducing the watershed
response series. It is a measure of the possibility of a
model adapting itself to the input uncertainty. The larger
the magnitude the poorer the possibility of the model
adapting itself to the error-contaminated input data. This
indicates that the calibrated parameter space lacks the
capability to drive the model to accurately reproduce the
watershed response because of an insufficient structure
of the hydrologic model.

The numerator of the MSII shows a measure of
the adaptiveness of a hydrologic model to the error-
contaminated input data, while the denominator of MSII
indicates the effectiveness of the model calibration results
and the predictive capability of the model. This enables
the MSII to reflect how well the calibration scheme func-
tions. The index interprets the variance caused by calibra-
tion process and model structure in a dimensionless form.
During the implementation of model evaluation, a system
uncertainty of less than zero is excluded from the calcu-
lation of MSII for its insignificance. Hence the smaller
value of the MSII represents better model structure, and
the range of MSII is: 0 � MSII < 1.

The logic behind uncertainty recognition and
quantification

All hydrologic models are being manipulated under an
unknown magnitude of input uncertainty. In this study,

Problem
entity

Computerized
model

Conceptual

model

Data validity

Conceptual

model

validity

Computerized
model verification

Operational
validity

Figure 2. Modelling Process (quoted and modified from Sargent, 1999)

a good hydrologic model is assumed and expected to
be capable of assimilating the input uncertainty and
simulating the watershed behaviour to a certain level of
precision. The methodology applied herein is designed to
test the stability of the predictive capability possessed by
a hydrologic model under a certain magnitude of input
uncertainty. The idea can be clarified through considering
a simplified modelling procedure, depicted in Figure 2,
which has been modified according to Sargent (1999).

In Figure 2, the problem entity is the system to be
modelled; the conceptual model is the mathematical
representation of the problem entity developed for a
particular study; and the computerized model is the
conceptual model implemented on a computer. The
conceptual model is developed through an analysis and
modelling phase; the computerized model is developed
through a computer programming and implementation
phase, and inferences about the problem entity are
obtained by conducting computer experiments on the
computerized model in the experimentation phase. The
conceptual model validity is defined as determining that
the theories and assumptions underlying the conceptual
model are correct and that the model representation
of the problem entity is ‘reasonable’ for the intended
purpose of the model. Computerized model verification
is defined as ensuring that the computer programming
and implementation of the conceptual model is correct.
Operational validity is defined as determining that the
model’s output behaviour has sufficient accuracy for
the model’s intended purpose over the domain of the
model’s intended applicability. Data validity is defined
as ensuring that the data necessary for model building,
model evaluation and testing, and conducting the model
experiments to solve the problem are adequate and correct
(Sargent, 1999).

Input data uncertainty makes data validity difficult to
perform. Since there is no way to assure the accuracy
of the data used for model calibration, the subsequent
result is that the best calibrated parameter set may or
may not equal to the ‘effective value’ which will make a
hydrologic model work properly. A feasible alternative is
to know that within a certain level of input uncertainty,

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 21, 1179–1195 (2007)
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Figure 3. Schematic diagram of the uncertainty acquisition process

there is a possibility that a hydrologic model is still
capable of regenerating true watershed characteristics. In
this sense, both model calibration processes and the error
propagation scheme induced by the model structure must
be taken into consideration.

Figure 3 depicts the schematic diagram of the method-
ology proposed in this study. The bias item located at the
centre of the structure dominates the whole uncertainty
propagation scheme. If the focus is only on the effect of
changing the bias item on the model outcome, referred to
as entire uncertainty in this study, it can be seen as a sen-
sitivity analysis of input data error; the system uncertainty
indicates the predictive capability of the model under
input uncertainty. The distance between system uncer-
tainty and entire uncertainty represents the accuracy of
the calibrated parameter sets, which can be referred to as
a measure of model divergence, a term proposed by Sage
and Melsa (1971).

Inherent uncertainty represents the variability of the
parameter sets generated from specified input uncertainty
levels. The distance between inherent uncertainty and
entire uncertainty indicates the capability of a model
to adapt itself to the specified input uncertainty, which
is dominated by the model structure. The quantified
and categorized uncertainty: system uncertainty, entire
uncertainty and inherent uncertainty, are integrated into
MSII, which enables the evaluation of how well the
model structure behaves under a certain magnitude of
input uncertainty.

ALGORITHM AND DATA APPLIED FOR
UNCERTAINTY IDENTIFICATION

The methodology to generate the system uncertainty,
entire uncertainty, inherent uncertainty and MSII is
described in the subsequent text, and is detailed in
Figure 4.

Instead of sampling the parameter space directly like
GLUE, the study here generates the parameter set space

by introducing a noise item into the input data with
a probability distribution specified by using the Monte
Carlo method.

1. For each different level of input uncertainty, a Monte
Carlo simulation is applied to sample many rainfall
realizations according to a real recorded event by
adding a noise item to it. Here normal distribution
with a mean of zero and a standard deviation equal
to the input uncertainty (1Ð0–9Ð0 mm/h) is used to
acquire model parameter spaces and outcomes under
different levels of input uncertainty. Here, 100 rainfall
realizations are generated for each level of input
uncertainty.

2. Using the least square sum of errors, 100 parameter
sets are determined for each level of input uncertainty.
For each specified input uncertainty, 10 000 model
outcomes were derived from the combination of 100
rainfall series realizations and 100 parameter sets
through the model calibrations.

3. For each level of input uncertainty, the system uncer-
tainty is acquired as a mean value by examining
the discrepancy between the 100 best-fit model out-
comes during calibrations and the observed watershed
response.

4. For each level of input uncertainty, the entire uncer-
tainty is acquired as a mean value by measuring the
discrepancy between the observed watershed response
and 10 000 model outcomes derived from the com-
bination of applying 100 rainfall realizations and its
corresponding 100 calibrated parameter sets as inputs.

5. For each level of input uncertainty, the inherent
uncertainty is acquired as a mean value by examining
the discrepancy between the best-fit model outcome
during calibration and the rest of model outcomes. In
this case, for one rainfall realization time series, the
mean of the discrepancy between the best fit model
outcome and 99 model outcomes using the parameter
sets identified for 99 other rainfall realizations is

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 21, 1179–1195 (2007)
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Figure 4. Algorithm for uncertainty recognition and quantification

acquired; the calculations are made for 100 rainfall
realizations; and finally, the inherent uncertainty is
obtained as the total mean value.

A Japanese basin, the Yasu river basin, located in the
Shiga prefecture, is used in this study. The main stream
length of the Yasu river is about 65 km and the total basin
area is around 387 km2. It is a mountainous watershed
with around 55% of the watershed having a slope greater
than 0Ð1.

The methodology is applied to a selected rainfall event.
The rainfall data was collected from four rainfall gauging
stations inside the Yasu river basin as shown in Figure 5.
The average precipitation was calculated according to
the weight of each rainfall station through the Thiessen
polygon method. The rainfall record of the event used
here is applied for rainfall realization by adding a noise
item, which is generated by using a normal distribution
with a mean of zero and a specified standard deviation.

Figure 5. Yasu river basin with the main stream length of 65 km and the
catchment area of 387 km2

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 21, 1179–1195 (2007)
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The negative rainfall was modified to zero in the rainfall
realization process. A more realistic input-error model
can be applied in this study but the error model with a
normal distribution with a mean of zero and a specified
standard deviation was chosen for its simplicity and for
exaggeration purposes. The water level data acquired
at the Yasu gauging station is in an hourly time step.
A rating curve is used for transforming water level to
discharge. During the observation period, there is no
artificial operation in the upstream area.

DESCRIPTION OF THE MODELS USED FOR
COMPARISON

Three hydrologic models are applied for model quan-
titative comparison. They are: SFM (Kimura, 1961),
TOPDMODEL (Beven and Kirkby, 1979; Beven et al.,
1984) and KW-GIUH (Lee and Yen, 1997). Table I sum-
marizes the models used in the study. The brief descrip-
tions are as follows:

Storage function model
The SFM was proposed by Kimura (1961). The form

of SFM is as below:
ds

dt
D re�t � Tl� � q, S D kqp

re D
{

f ð r, if
∑

r � RSA

r, if
∑

r > RSA
�5�

where S is water storage height; r is rainfall intensity; q
is runoff height; t is time step; and Tl is the lag time.
This model is often used for the flood runoff calculation
in a basin with an area of less than five hundred square
kilometers in Japan.

Parameter p is a constant, commonly the value is 0Ð6;
f is the ratio of contribution area of the watershed, which
generates outflow; and RSA is the accumulated saturated
rainfall. Parameter k is solved by the equation proposed
by Nagai et al. (1982) which is:

k D 2Ð5�
np
i
�0Ð6A0Ð24 �6�

where n denotes effective roughness coefficient, i denotes
average slope of the watershed, and A is catchment area.
A fully functional SFM with parameter Tl, f, and RSA

is used.
Also, for contradistinction, a poorer-structured model

with comparison to the original SFM by fixing the
value of RSA to 0Ð0 (which makes Tl became the only
functional parameter of the parameter-constrained SFM),
is manipulated in this study.

TOPMODEL
TOPMODEL is almost 30 years old and has been the

subject of numerous applications in a wide variety of
catchments. The code used herein is a modified version
based on the TOPMODEL 95Ð02 acquired from the offi-
cial website of TOPMODEL (http://www.es.lancs.ac.uk/
hfdg/freeware/hfdg freeware top.htm). TOPMODEL is a
set of programs for rainfall-runoff modelling in single
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or multiple subcatchments in a semi-distributed way and
using raster elevation data for the catchment area. It is
considered a physically based model as its parameters can
be measured in situ (Beven and Kirkby, 1979; Beven,
1997). Subcatchment discharge is routed to the catch-
ment outlet by using a time-area diagram with a constant
velocity over the entire catchment area, a parameter that
needs to be calibrated. Topographic index derivation was
obtained by using DEM algorithm. The infiltration excess
mechanism and the evapotransportation mechanism are
not included in this study.

In TOPMODEL, there are several parameters that need
to be calibrated before model validation and implemen-
tation. Basically they are: m, the decay factor which con-
trols the rate of decline of transmissivity with increasing
storage deficit; To, the hydraulic transmissivity; td: the
time delay constant for vertical flux calculation; RV, the
overland flow velocity; Qo, the initial base flow; and Sr0,
the initial root zone storage deficit, which are specified
at the start of the simulation.

Inside TOPMODEL, the vertical drainage qv from an
unsaturated zone storage at any point of topographic
index class i is calculated by Equation (7):

qvi D Suz

Sitd
�7�

where Suz is the storage in the unsaturated zone, td is a
time delay constant and Si is a local storage deficit; or

by Equation (8) (Beven et al., 1995):

qvi D ˛K0e�Si/m �8�

where ˛ is the effective vertical hydraulic gradient, K0 is
the saturated conductivity at the surface, and m is a model
parameter controlling the rate of decline of transmissivity
with increasing storage deficit. If the value of ˛ is set
to unity, thus assuming that the vertical flux is equal
to the saturated hydraulic conductivity just at the water
table, it is eliminated as a parameter (Beven et al., 1995).

Figure 6. Best-fit hydrograph simulated by each model
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Figure 7. Rainfall realizations according to the recorded event. (a), (b) and (c) represent fifth and ninety-fifth percentile for each time step of the 100
rainfall realizations with the standard deviation equal to 1, 5 and 9 mm/h respectively
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Figure 8. Outcomes during calibration of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and KW-GIUH
with input uncertainty D 1 mm/h

Equation (7) is the equation of a linear store but with a
time constant Sitd that increases with increasing depth of
the water table (Beven et al., 1995). In the model, the K0

is acquired by To, that means the number of parameters
are five (m, To, Qo, RV and Sr0) or six (m, To, td, Qo,
RV and Sr0). Two TOPMODEL models with different
vertical flux computing components are applied for model
quantitative comparison.

KW-GIUH

Rodriguez-Iturbe and Valdes (1979) and Gupta et al.
(1980) developed the IUH by using geomorphic stream

order information. If one excess unit of rainfall falls
on the watershed instantaneously, by assuming that the
raindrops are independent and isolated from each other
and ignoring the raindrops falling on the river, then the
distribution of the number of raindrops appearing at the
outlet to time is the instantaneous unit hydrograph of the
watershed. The movement of the surface water, which
came from raindrops inside the watershed, is described
in terms of a probability distribution.

KW-GIUH (Lee and Yen, 1997) is a refinement of the
GIUH method by using kinematic wave approximation
to calculate the travel time of overland flow inside the
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Figure 9. Outcomes during calibration of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and KW-GIUH
with input uncertainty D 5 mm/h

catchment. In KW-GIUH, an ith-order subbasin of the
watershed is conceptually simplified as consisting of two
identical rectangular overland-flow planes. Each plane
contributes a lateral discharge into a channel of constant
cross section and slope. For implementation, the channel
width on the outlet of the watershed is acquired by a field
survey; the rest of the geomorphic factors can be acquired
from a topographic map or through raster elevation data
and DEMs by some algorithms.

RESULTS OF APPLICATIONS AND DISCUSSION

The methodology described above is applied here for
model comparison. Figure 6 is the hydrograph of the

calibration results of the five models. The performances
of the models are evaluated by using the Nash–Sutcliffe
efficiency (Nash and Sutcliffe, 1970). Table II is the
summary of the results. The TOPMODEL is the best
while the parameter constrained SFM is the worst.

The rainfall record of the event used here is applied
for a generation of 100 rainfall realizations for every
input uncertainty increment; a normal distribution with
a mean of zero and a specified standard deviation as
input uncertainty is manipulated for the random process.
Figure 7 shows the examples of rainfall realizations by
specifying the input uncertainty magnitude equal to 1Ð0,
5Ð0 and 9Ð0 mm/h. For each time step, the fifth and the
ninety-fifth percentile of the realized rainfall intensity
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Figure 10. Outcomes during calibration of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and
KW-GIUH with input uncertainty D 9 mm/h

Table II. Value of the Nash–Sutcliffe coefficient for each model with the best–fit model parameter set

Hydrologic Model Parameter-constrained
SFM

SFM Five-parameter
TOPMODEL

Six-parameter
TOPMODEL

KW-GIUH

Nash–Sutcliffe coefficient 0Ð45 0Ð80 0Ð86 0Ð86 0Ð77

are drawn. It can be seen that the spectrum of the
rainfall becomes broader while the input uncertainty is
higher. The outcomes during calibration of each model
are plotted in Figures 8 to 10, and the simulation results
of each model are plotted in Figures 11 to 13. The

fifth and ninety-fifth percentiles of the 100 hydrographs
of each time step of the specified input uncertainty
(1, 5 and 9 mm/h) are plotted. In Figures 8 and 11,
except for the parameter-constrained SFM, the models
perform without obvious distinction. While in Figures 9
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Figure 11. Simulation results of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and KW-GIUH with
input uncertainty D 1 mm/h

and 12, the characteristics of the models were revealed
by the spectrum of the hydrograph. Since the size
and the shape of the spectrum of the model outcomes
reflect the behaviour of a model structure response to
the error-contaminated input data. It can be seen that
both in calibration phase and simulation phase, the
outcomes spectrum of the KW-GIUH envelopes the
observed watershed response data the narrowest. While
other models, especially the parameter-constrained SFM,
envelop the observed response data poorly, indicating a
smaller value of the system uncertainty as is revealed in
Figure 14. Figures 10 and 13 can be seen as an extreme
condition for a large magnitude of input uncertainty, it
can be seen that only KW-GIUH still holds the capability
to produce a simulated hydrograph, that is, similar to the
observed watershed response.

Figure 14 is the entire, inherent and system uncertainty
of each model. It can be seen that the entire uncertainty
becomes larger as input uncertainty increases. It is
always expected that entire uncertainty increases as input
uncertainty increases; the discrepancy between the entire
uncertainty and the inherent uncertainty shows the same
tendency. The system uncertainty is located between
entire and inherent uncertainty. The range between entire
and inherent uncertainty indicates the capability of a
model that adapts itself to the error-contaminated data.
In other words, it is the capability of the model to
assimilate the input error through the adjustment of the
model parameter. The broader the distance, the poorer the
prediction capability of the model, meaning that there is
less possibility that the model is capable of producing an
accurate watershed response series.
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Figure 12. Simulation results of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and KW-GIUH with
input uncertainty D 5 mm/h

The system uncertainty indicates the accuracy of the
model calibration result. It is shown that within an input
uncertainty of less than 2Ð0 mm/h, there is little dis-
tinction in the entire uncertainty and system uncertainty
between the five- and the six-parameter TOPMODEL.
However, the higher magnitude of the inherent uncer-
tainty of the five-parameter TOPMODEL indicates the
poorer capability of the model adapting itself to the
error-contaminated data. Yet with an input uncertainty
larger than 5 mm/h, the entire uncertainty and system
uncertainty of the six-parameter TOPDMODEL becomes
worse than the five-parameter TOPMODEL. The results
from the higher inherent uncertainties indicate the same.
This is evidence that the five-parameter TOPMODEL
is more capable of reproducing the watershed response
series than the six-parameter TOPMODEL when the

magnitude of the input uncertainty is high. By composing
the possibility (the distance between entire and inherent
uncertainty) and the capability (the system uncertainty),
the model structure of a model can be evaluated.

Figure 15 shows the MSII of each model. Except the
parameter constrained SFM, there is no apparent dis-
tinction between the other four models with small input
uncertainties. However, KW-GIUH is structurally more
stable than SFM and TOPMODEL with increasing input
uncertainty. This also proves that even TOPMODEL per-
forms the best during the calibration process, though
with increasing input uncertainties, the capability of TOP-
MODEL to adapt itself to the error-contaminated input
data is still weak. Although KW-GIUH does not perform
as well as TOPMODEL with small input uncertainties,
with increasing input uncertainty, the capability of the
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Figure 13. Simulation results of SFM, parameter-constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and KW-GIUH with
input uncertainty D 9 mm/h

model structure to adapt itself to the error-contaminated
data is better than that of TOPMODEL. For SFM, with
small magnitudes of input uncertainty, the capability is
as good as TOPMODEL, however, the rapid ascending
trend shows that it fails the test under high levels of input
uncertainty.

The reason for the superior performance of the KW-
GIUH under higher magnitudes of input uncertainty can
be explained by the structure of MSII and Figures 10,
13 and 14. As mentioned previously, when the distance
between the entire uncertainty and the inherent uncer-
tainty is close, a small value of MSII is shown, and the
model is considered to have a better chance of a better
fitting simulation result. It is a measure of the capability
of a model adapting itself to the input uncertainty. The
higher the performance of the system uncertainty, the bet-
ter the model structure is. It is shown in Figures 10 and

13 that the spectrum of the model outcomes during the
calibration phase and simulation phase of KW-GIUH are
narrower than the other models. This indicates a higher
inherent uncertainty. Also, the average of the spectrum,
which can be expressed by the system uncertainty and
the entire uncertainty, which are shown in Figure 14,
is better than the other models under high magnitude
of the input uncertainty. The behaviour of the system
uncertainty under increasing input uncertainty indicates
the capability of the model to assimilate the input uncer-
tainty by using the model parameter. This is evidence that
a higher performance of the system uncertainty denotes
a better model structure.

As a result, the higher performance of the sys-
tem uncertainty makes KW-GIUH superior to the five-
parameter TOPMODEL under a high magnitude of input
uncertainty. In addition to the reasons mentioned above,
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Figure 14. Entire, inherent and system uncertainty of SFM, constrained SFM, five-parameter TOPMODEL, six-parameter TOPMODEL and
KW-GIUH

the watershed mountainous terrain characteristics and the
selection of heavy rainfall event areas, are also consid-
ered as some of the reasons for the better performance
of the KW-GIUH. As a consequent result, the capability
of KW-GIUH to adapt itself to high input uncertainty is
better than the other hydrologic models by the selected
input-error model.

CONCLUSIONS

In this study, through uncertainty recognition and quan-
tification, a methodology for hydrological model compar-
ison is proposed. A uniform distribution with a specific
standard deviation is applied to randomly generate the
bias item, which is added to a true rainfall event for every
time step to generate rainfall realizations. The parameter

space and model outcomes (outflow discharge) under dif-
ferent input uncertainty levels are then acquired. Instead
of sampling the parameter space directly as GLUE
Methodology, the methodology generates the parameter
set space by introducing noise to the input data with a
specified probability distribution. This reflects the truth
that parameter uncertainty comes from the uncertainty in
the data and the way the model structure responds to it.

Finally, by examining the interrelationship between
model simulation outcomes, model outcomes during cal-
ibration and observed watershed response series (dis-
charge), different categorized uncertainties can be recog-
nized and quantified by a predefined index with its cor-
responding input uncertainty level. An index which orig-
inates from the Nash–Sutcliffe efficiency named MSII
is applied to quantify model structure uncertainty. The
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index can reveal the capability of a model to adapt itself
to the error-contaminated input data under a specific level
of uncertainty in a relative display frame. The study has
shown that the index can be used as an indication for
implementing model quantitative comparison/selection.

Five hydrologic models are used for model compar-
ison in this study, which are: SFM, parameter con-
strained SFM, TOPMODEL with five parameters, TOP-
MODEL with six parameters and KW-GIUH. It is shown
that with a small magnitude of input uncertainty, the
model structure of parameter constrained SFM is the
worst; TOPMODEL (both the five- and six-parameter
versions), SFM, KW-GIUH perform similarly. With
increasing input uncertainty KW-GIUH becomes the
best, then TOPMODEL (five-parameter version), TOP-
MODEL (six-parameter version), SFM and then the
parameter–constrained SFM.

The input-error model manipulated in this study was
chosen for its simplicity and exaggeration purposes. The
performance of KW-GIUH is superior under a high
magnitude of the input uncertainty. The results show that
the methodology is a good reference for a hydrological
modeller or decision maker, it should be noted that the
results are for certain input error assumptions and certain
watershed topographic features.

The aim of this paper is to apply the methodology of
predicting the uncertainty quantification caused by input
data error and model calibration processes. The input-
error model is not the main concern here. Theoretically,
the methodology is capable of performing hydrologic
model comparison with any input-error model. That is,
the hydrologic model can be compared under different
input data error assumptions. Compared to the parameter
space sampling based approach, the methodology applied
in this study treats the input uncertainty as an intrinsic
component of the uncertainty identification process, and
evaluates the model structure according to the ability
of the model to adapt itself to the error input. The
methodology would be enhanced if the uncertainty of the

observed response data is involved in the procedure for
uncertainty identification. Also, applying various input
error models, especially a more realistic one to test the
robustness of the methodology, will be considered in a
further study. The calculation cost should also be taken
into consideration since the computational burden will be
several times larger than the present approach.

Only one rainfall event is applied in this study,
further investigations are suggested to incorporate a result
updating scheme into the methodology. A mathematical
description of the methodology is needed so that an
adequate updating procedure can be developed. The
Bayesian approach seems to be one of the options to
solve the problem.
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