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ABSTRACT  
 

Numerical models for simulation of saturated-unsaturated flow are increasingly being 
used in water resources evaluation and environmental management. Because of a superior 
mass balance, the modified Picard iteration method is widely used for solving saturated-
unsaturated flow equation. However, the computational cost becomes considerably large 
when calculating multi-dimensional flow properties in wide region with finer grid resolution 
as it is necessary to make a large matrix calculation to get solution. To reduce this 
computational cost, in this study, we proposed a numerical method combining the iterative 
alternating direction implicit (IADI) method with the modified Picard iteration method for 
solving multi-dimensional saturated-unsaturated flow. There is no requirement to make a 
large matrix calculation in the process of the proposed method. Two and three dimensional 
slope simulations under rainfall conditions are conducted by the proposed method and the 
modified Picard iteration method. It is found that the proposed method is faster than the 
conventional modified Picard method while the difference of the simulation results is not 
significant. Further it is observed that the new method is more efficient for simulating large 
regions with finer resolution.  

 
Keywords: Richards Equation, Modified Picard Method, IADI Method, Saturated-Unsaturated 
Flow  
 
 
1. INTRODUCTION 
 

Numerical simulation of saturated-unsaturated subsurface flow is being widely used in 
many branches of science and engineering including environment engineering, agricultural 
engineering, and hydrology. The saturated-unsaturated subsurface flow is governed by the 
Richards equation (Richards, 1931) which is written as follows 

 

                       ( ) KK
t z
θ ψ ψ∂ ∂
= ∇ ⋅ ∇ +

∂ ∂
                       (1) 

 
Where ψ  is the pressure head, θ  is the volumetric moisture content, ( )K ψ is hydraulic 
conductivity, t is time, z is denotes the vertical dimension, assumed positive upward. Also it is 
assumed that appropriate constitutive relationships between θ  and ψ  and between K  and 
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ψ  are available. Eq. (1) is called as the mixed form Richards equation including both θ  and 
ψ . The mixed form Richards equation has advantages over the ψ -based and θ -based 
Richards equation, because the mixed-form is more mass conservative than the ψ -based and 
θ -based forms (Celia et al. 1990; Clement et al. 1994). Celia et al. (1990) shows that the 
modified Picard iteration method for the mixed form Richards equation is fully mass 
conserving in the unsaturated zone. 

However, the computational cost becomes considerably large when calculating multi-
dimensional flow properties in wide region with finer grid resolution as it is necessary to 
make a large matrix calculation to get solution. In this study, we reduce these computational 
costs by combining the iterative alternating direction implicit (IADI) method (Rubin. 1968) 
with the modified Picard iteration method. Because the calculation in the process of the IADI 
method is conducted implicitly for one direction (dimension) even though the simulation is 
multi-dimensional, it can be solved efficiently. To validate the proposed numerical method, 
two and three dimensional slope simulations are conducted by the proposed method and the 
modified Picard iteration method and the result of the two methods are compared. 

 
2. NUMERICAL METHOD 
 
 Modified iteration Picard method 
 

The two dimensional Richards equation is written as follows 
 

                 1K K
t x x z z
θ ψ ψ∂ ∂ ∂ ∂ ⎡ ∂ ⎤⎡ ⎤ ⎛= + ⎜

⎞+ ⎟⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠⎣ ⎦
                   (2) 

 
where x denotes the horizontal dimension, z denotes the vertical dimension. The modified 
Picard iteration method developed by Celia et al. (1990) is based on a fully implicit 
(backward Euler) time approximation as follows 
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         (3) 

 
where the superscripts n and m denote time level and iteration level, and the source/sink term 
has been ignored for simplicity. The moisture content at the new time step and a new iteration 
level ( ) is replaced with the truncated Taylor series expansion with respect to 1, 1n mθ + + ψ , 
about the expansion point 1,n mψ + as follows 
 

                
1,

1, 1 1, 1, 1 1, 2( ) 0( )
n m

n m n m n m n md
d
θθ θ ψ ψ
ψ

+
+ + + + + += + − + δ              (4) 

If the higher-order terms are neglected in Eq. (4) and substituting this equation into Eq. (3) 
gives  
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where /C d dθ ψ=  is the specific moisture capacity function. Eq. (5) can be rewritten in the 



terms of the increment in iteration  as follows 1, 1 1,m n m nδ ψ ψ+ + += − m
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Eq. (6) defines the modified Picard iteration method of Celia et al. (1990). mδ  is the 
unknown dependent variable and this simultaneous equation is able to be solved by making a 
matrix calculation. In case of multi-dimensional simulation for large region with fine grid 
resolution, a large matrix calculation is required in the process of calculating simultaneous 
equation. 

The iterative process of Eq. (6) continues until the difference between the calculated 
values of the moisture content of two successive iteration levels becomes less than the 
tolerance θδ  (Huang et al. 1996) as follows 

 
                  1, 1 1,n m n m

θθ θ+ + + δ− ≤                            (7) 
 

In this study, 0.00001θδ =  is used. Huang et al. (1996) showed that this convergence 
criterion based on moisture content is more efficient in a computation than based on pressure 
head especially when the soil hydraulic characteristics are highly nonlinear. 

 
IADI Method and Its Coupling with the Modified Picard Method 

 
Iterative alternating direction implicit (IADI) method of Rubin (1968) is an algorithm 

for ψ -based form Richards equation as follows 
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The linearized expressions of Eq. (8) based on the IADI method is written as follows 
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where subscript i and j means the spatial coordinates of the point in x and z axis respectively, 
and mI  is the iteration parameter, computed for each iteration. In this study,  is 
used according to Weeks (2004). Because Eqs (9) and (10) are one-directional implicit forms, 
there is no requirement to make a large matrix calculation for solving the equations even 
though in a multi-dimension.  

0.55m
mI =

The Richards equation can be efficiently solved by using IADI method. But as this 
scheme is an algorithm for the ψ -based form Richards equation, it is often faces to a 
problem of mass conservation error. To take advantage of two numerical methods, IADI 
method and the modified Picard iteration method, we propose a numerical method combining 
both two methods. The proposed method applied to Eq. (2) is written as follows 
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These equations are rewritten as follows 
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Eqs (14) and (15) are one-directional implicit forms and based on mixed-form Richards 
equation. 2mδ  and  are the unknown dependent variables and the convergence 
criterion is as follows 

2 1mδ +

 
1,2 2 1,2n m n m

θθ θ+ + + δ− ≤                            (16) 
The numerical method using Eqs (14) and (15) was confirmed by conducting two dimensional 
slope simulation. 
 



 Modifying IADI method 
  

Extending Eqs (14) and (15) for a three-dimensional field, it is written as follows  
 

3 3
1,3 1,3 3

, ,
, ,

1,3 1,3 1,3 1,3
, , , , 1,3 1,3 1,3

, , , , , ,

1

m m
n m n m m
i j k m n

i j k

n m n n m n m n m
i j k i j k n m n m n m

i j k i j k i j k

C K I K
t x x

K K K
t x x y y z z

δ δ δ

θ θ ψ ψ ψ

+ +

+ + + +
+ + +

⎡ ⎤∂ ∂
+ +⎢ ⎥Δ ∂ ∂⎣ ⎦

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛∂ ∂ ∂ ∂ ∂ ∂
= − + + + +

⎞
⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦

 

(17) 
3 1 3 1

1,3 1 1,3 3 1
, ,

, ,

1,3 1 1,3 1 1,3 1 1,3 1
, , , , 1,3 1 1,3 1 1,3 1

, , , , ,

1

m m
n m n m m
i j k m n

i j k

n m n n m n m n m
i j k i j k n m n m n m

i j k i j k i

C K I K
t y y

K K K
t x x y y z z

δ δ δ

θ θ ψ ψ ψ

+ +
+ + + +

+ + + + + + + +
+ + + + + +

⎡ ⎤∂ ∂
+ +⎢ ⎥Δ ∂ ∂⎣ ⎦

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛∂ ∂ ∂ ∂ ∂ ∂
= − + + + +⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎝⎣ ⎦ ,

⎞

⎠ j k

(18) 
3 2 3 2

1,3 2 1,3 2 3 2
, ,

, ,

1,3 2 1,3 2 1,3 2 1,3 2
, , , , 1,3 2 1,3 2 1,3 2

, , , ,

1

1

m m
n m n m m
i j k m n

i j k

n m n n m n m n m
i j k i j k n m n m n m

i j k i j k

C K I K
t z z

K K K
t x x y y z z

δ δ δ

θ θ ψ ψ ψ

+ +
+ + + + +

+ + + + + + + +
+ + + + + +

⎡ ⎤⎛ ⎞∂ ∂
+ + +⎢ ⎥⎜ ⎟Δ ∂ ∂⎝ ⎠⎣ ⎦

− ⎡ ⎤ ⎡ ⎤ ⎛∂ ∂ ∂ ∂ ∂ ∂
= − + + + +⎜⎢ ⎥ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎝ , ,i j k

⎡ ⎤
⎢ ⎥⎟

⎠⎣ ⎦

⎞

(19) 
where subscript i, j, and k are spatial coordinates of the point in x, y, and z axis respectively. 
We conducted three dimensional slope simulation using Eqs (17)~(19). However, the 
calculation using these equations was unstable and the iterative calculation did not converge. 
The reason of this instability has not been made clear, but we supposed that the terms 
calculated implicitly are not enough to solve the equation in a three dimension simulation. 
The two and three dimensional equations, Eqs (14)~(15), (17)~(19), are one-directional 
implicit forms. The half of the direction are implicitly calculated in the two-dimensional 
equations, Eqs (14) and (15). On the other hand, the one of three of the directions are 
implicitly calculated in the three-dimensional equations, Eqs (17)~(19). Therefore, it is 
supposed to be needed to calculate implicitly over the half of the direction terms for 
stabilizing the iterative process. 

To stabilize the iterative calculation in a three-dimensional simulation, we modified 
the IADI method part of the proposed method. It is assumed that Eq. (17) is calculated 
according to the order shown in Fig.1 . Then, when the red region of Fig. 1 is being calculated, 
the values of the next iteration step in the blue region were already solved. Hence, we can use 
these values for calculating the red region. According to this idea, we modified Eq. (17) as  

 

 
 

Figure 1 the order of the calculation for equation (17) in modified IADI method 
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(20) 
This equations is rewritten as follows 
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(21) 
Eq. (20) is implicit for not only x direction but also the half of y and z directions. The terms of 

1,3 1
, 1,
n m
i j kψ + +

−  and 1,3 1
, , 1
n m
i j kψ + +

−  in the right side of Eq. (21) are already calculated values and 3mδ  is 
the only unknown dependent variable in Eq. (21). Therefore, the equation implicit for x 
direction and the half of y and z directions is solved in the process of this method but this 
equation can be solved by calculating the equation implicit for only one direction. The 
equation of y and z directions, Eqs (18) and (19), are also modified in the same way as the 
equation of x direction.  

This numerical method combining the modified IADI method with modified Picard 
iteration method is a newly developed method by this study. 
 
3. NUMERICAL EXPERIMENTS 
 
 Two-dimensional simulations  
 

To validate the proposed computation method, the two-dimensional slope simulations 
are conducted by using the modified Picard iteration method and the proposed method. The 



simulation condition is shown in Fig. 2. Soil slope, 10m long, 1m thickness and 20 degree 
inclined, is concerned. A constant water level is maintained at the lower end and the bottom 
side and the upper end are no flux boundaries. The slope surface is under rainfall condition 
and Fig. 2(b) shows the rainfall intensity. Table 1 shows the four grid size conditions used in 
the simulation. The time step is 10 sec and the simulation length is 10 hours. The soil water 
retention and hydraulic conductivity were described as follows 

 

0 0

( 0
1 exp ,

0 ( 0
r

s r

ψ ψθ θ ψ ψ ψ
ψθ θ ψ ψ

<⎛ ⎞ ⎛ ⎞′ ′ ⎧− ′= + − = ⎨⎜ ⎟ ⎜ ⎟ ≥− ⎩⎝ ⎠ ⎝ ⎠

)
)          (22) 

r
s

s r

K K
β

θ θ
θ θ
⎛ −

= ⎜ −⎝ ⎠

⎞
⎟                                            (23) 

 
where sθ  and rθ  are the saturated and residual water contents respectively; sK  is the 
saturated hydraulic conductivity; 0ψ  is air entry pore-water pressure head; β  is the 
parameter determining the shape of unsaturated hydraulic conductivity curve. In this study, 

sθ =0.5, rθ =0.1, 0ψ =-0.25m, sK = 0.00001m/s, β =3.0 are used. 
 

 
 

Figure 2 Simulation condition: (a) slope area, (b) rainfall intensity 
 

Table 1 Grid size conditions for two-dimensional simulation 
 

 x z Number of mesh 
Case1 0.1 m 0.05 m 25000 
Case2 0.05 m 0.05 m 50000 
Case3 0.05 m 0.25 m 100000 
Case4 0.25 m 0.25 m 200000 

 
Figure 3 shows the error which is defined as follows 
 

                             MP Co

MP

Error
θ θ
θ
−

=                          (24) 

 
where MPθ  is the moisture content calculated by the modified Picard iteration method, Coθ  
is the moisture content calculated by the proposed method. Figure 3(a) is the average error 
and Figure 3(b) is the maximum error at all grids points. The peak value of the average errors 



are around  and the peak value of the maximum errors are around . Both 
values are small enough to be neglected. 

55.0 10−× 31.4 10−×

Figure 4(a) shows computation times of the modified Picard iteration method and of 
the proposed method for each case. Figure 4(b) shows the ratio of the computation time of the 
proposed method to that of the modified Picard iteration method. In this simulation, the 
proposed method is faster from 1.5 to 5 times than the modified Picard iteration method.  

 

 
 

Figure 3 Error of moisture content: (a) average value, (b) maximum value in all grids 
 

 
 

Figure 4 Computation times in two-dimensional simulations 
 

 Three-dimensional simulations 
 

The three-dimensional simulation condition is shown in Fig. 5. Soil slope, 10m long, 
5m wide, 1m thickness and 20 degree inclined, is concerned. The half of the surface is under 
rainfall condition so that the subsurface flow becomes three-dimensional flow. The Rainfall 
intensity is shown in Fig. 2(b). A constant water level is maintained at the lower end and the 
both lateral sides, the bottom side, and the upper end are no flux boundaries. Table 3 shows 
the four grid size conditions used in the simulation. The time step is 10 sec and the simulation 
length is 10 hours. The soil water retention and hydraulic conductivity were same in the two-
dimensional simulations. 

 
Table 3 Grid size conditions for three-dimensional simulation 

 
 x y z Number of mesh 

Case1 0.2 m 0.2 m 0.05 m 25000 
Case2 0.2 m 0.1 m 0.05 m 50000 
Case3 0.1 m 0.1 m 0.05 m 100000 
Case4 0.1 m 0.1 m 0.025 m 200000 

 



 
 

Figure 5 Simulation condition 
 

Figure 6 shows the error which is defined as Eq. (24). The peak value of the average 
errors are around  and the peak value of the maximum errors are around 42.5 10−× 36.5 10−× . 
Both values are small enough to be neglected. 

Figure 7(a) shows computation times of the modified Picard iteration method and of 
the proposed method for each case. Figure 7(b) shows the ratio of the computation time of the 
combining method to that of the modified Picard iteration method. In this simulation, the 
proposed method is faster from 6 to 8 times than the modified Picard iteration method.  

 

 
 

Figure 6 Error of moisture content: (a) average value, (b) maximum value in all grids 
 
 

 
 

Figure 7 Computation times in three-dimensional simulations 
 

4. CONCLUSION 
 

This study proposed a new computation method combining the iterative alternating 
direction implicit (IADI) method with the modified Picard iteration method for solving multi-
dimensional saturated-unsaturated flow. There is no requirement to make a large matrix 
calculation in the process of the proposed method.  

To validate the proposed method, the two and three dimensional slope simulations 
were conducted. The proposed method was stable in the two-dimensional simulations. But in 
the three-dimensional simulation, it was unstable and iterative calculation did not converge. 
To stabilize the iterative calculation in the three-dimensional simulations, we modified the 
IADI method part of the proposed method. This method combining the modified IADI 



method with the modified Picard iteration method is applicable in the two and three 
dimensional simulations. 

The two and three dimensional slope simulations under rainfall conditions were 
conducted by the proposed method and the modified Picard iteration method. It is found that 
the proposed method is faster than the conventional modified Picard method while the 
difference of the simulation results is not significant. Further it is observed that the new 
method is more efficient for simulating with finer resolution. 
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