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ABSTRACT  
 
 Flood control decisions in areas that are poorly gauged can be based on synthetic data 
if and only if such data can be made consistent to the historical counterpart.  However, 
established methods that do not involve synthetic data are preferred for this problem such as 
the procedure adopted by the Japan Ministry of Land, Infrastructure, Transport, and Tourism 
(MLIT).  Here, we develop an alternative methodology based on the Neyman-Scott clustered 
Poisson rectangular pulse rainfall model (NSM) suited for rainfall extreme value consistency.  
It is shown that simulated streamflow based on the NSM rainfall is a competent estimate to 
extreme flood magnitudes.  We observe that the latter method is more rational due to its 
careful emphasis on extreme value rainfall.   
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1. INTRODUCTION 
 

Historical streamflow records are the prime basis of effective flood control decisions 
such that a safe coexistence can be established between river basin and inhabitants.  
However, the lack of recorded data in some river basins complicates the determination of 
design flooding events. Fortunately, methodologies are available to systematically solve this 
problem.  The approach we adopt in this study incorporates techniques that simulate the 
transformation of rainfall into streamflow in the form of distributed hydrological modeling 
(Beven, 2002).  More importantly, we couple this tool with an enhanced model for 
generating synthetic rainfall from scarce historical rainfall records based on the Neyman-Scott 
clustered Poisson rectangular pulse rainfall model, or NSM (Rodriguez-Iturbe et al., 1987).   

Consistency of NSM synthetic extreme rainfall to those of historical counterpart has 
been explored in the past (Cowpertwait, 1998).  We have also contributed to this problem by 
developing the so-called NSM Fano factor exponent, or FFE (see Sec 2).  Emphasis on 
consistency in rainfall extremes leads to a sufficient synthetic basis that is sound, reliable and 
economical.  Only then can one base design flood evaluation on a synthetic technique such 
that the lack of historical data is no longer a hindering factor in the decision-making process.   

Our interest here is in showing the advantage of synthetic rainfall generation in 
evaluating design streamflow by comparing two associated methodologies.  One method 
excluding synthetic rainfall generation is based on the Japan Ministry of Land, Infrastructure, 
Transport, and Tourism (MLIT).  Another method is developed by the authors following the 
NSM framework.  Both methods involve distributed hydrological modeling based on Kyoto 
University’s Object Oriented Hydrologic Modeling System (OHyMOS). 
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2. METHODOLOGY 
 
2.1  The NSM and its governing equations  
 

The NSM is a clustered Poisson point process (Sefozo, 1990) in which: a) storms 
arrive following a temporal Poisson process (mean recurrence rate λ), b) storms consist of a 
geometric random number of rain cells, no storm containing zero cells (mean cell number μc), 
c) each cell arrival relative to the storm arrival follows an exponential distribution (mean lag 
time 1/β), d) each cell duration follows an exponential duration (mean duration 1/η), and e) 
each cell intensity follows a two-parameter gamma distribution (shape parameter α and scale 
parameter θ).  The superposition of these rain cell pulses in the rainfall intensity-time plane 
results in the target synthetic rainfall.  Six parameters are therefore required to tune the NSM 
for a particular application.  The following T-duration aggregated moments were derived for 
parameter estimation in the NSM (Rodriguez-Iturbe et al., 1987 and Cowpertwait, 1998).   
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where E[Y] is mean rainfall depth, Var[Y] is the rainfall depth variance, Cov[YT,YT+k] is the 
rainfall depth autocovariance at lag-k,  Cov[YT,YT+k] is the rainfall depth autocorrelation at 
lag-k,  TCM[Y] = third central moment (TCM) of rainfall depth.   
 
2.2  The Fano factor exponent of the NSM 
 

We also include the expression for the Fano factor exponent (FFE) of the NSM 
(Mondonedo et al., 2008) in the parameter search.  The derivation of the Fano Factor 
exponent expression starts with the Peaks Over Threshold (POT) rainfall point process, 
shown in Figure 1.  In this case, historical hourly data pooled monthly Ui(T) is determined 
using the threshold zi, taken as the smallest monthly maximum rainfall (Figure 1a).  The 
POT rainfall Qi(T), the corresponding hourly historical rainfall greater than or equal to this 
threshold (Figure 1b), is given a unit count Bi(T) (Figure 1c).  The point process Ni(T*) 
(Figure 1d)is the sum of the unit counts within adjacent non-overlapping windows of size T*.  
Ni(T*) is our basis for the FFE.   
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Figure 1. Determining the Peaks Over Threshold (POT) rainfall point process and counting 
process Ni(T*).  (a) sample rainfall Ui(T) with previously determined threshold zi, (b) POT 
rainfall Ui(T)  values greater than or equal to zi (c) unit counts Bi(T) assigned for each 
rainfall occurrence, (d) counting process Ni(T*).   
 
 The Fano factor (Fano, 1947) is defined as the ratio of the variance of Ni(T*) and its 
mean, or:   
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where:  
E = operation to obtain expected value. 
 
When the Fano factor is evaluated for the set of windows W = {2, 10, 20, …100 hours} we 
can observe the typical plot shown in Figure 2.  A power law relationship was proposed for 
this scaling behavior by Lowen and Teich (1995, 2005) as well as Telesca et al. (2007), 
shown here as Eq. 6.   
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Figure 2 Scaling in the counting process Ni(T*) obtained from Kamishiiba POT series Qi(t) in 
June. 
 
where ξi is the Fano factor exponent, or the FFE.  Alternatively, we assume that the average 
of the point process Ni(T*) has as a power law relationship with respect to T*, while the 
average can be taken as a linear one, then the following approximation for the overall FFE 
scaling behavior holds: 
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After curve fitting operations for Eqs. 7 and 8 (i.e.: linear regression of historical Qi(T) for 
determining Ai, Bi, and Ci), we may use Eq. 9 to write the approximate Fano Factor of 
historical Qi(T), FFHi(TMi), at window T* = mean storm duration TMi as:  
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Similarly, the same Fano factor at mean storm duration FFSi(TMi) can be written 
explicitly using Eq. 6  such that: 
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For our purposes, an ideal simulation should yield synthetic rainfall with Qi(T) such 

that historical and synthetic Fano factors at mean storm duration are equal, or based on Eqs. 
10 and 11:  

 
Si

i

0

Mi1B
Mi

i

i

T
T1T

C
A

ξ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=        (12) 

 
 After some algebra, we may isolate the synthetic Fano factor exponent ξSi shown here 
as Eq. 13: 
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The expression for TMi in terms of the NSM parameters is based on Cowpertwait’s (1991): 
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where γ is the Euler constant (0.577…).  Substituting this approximation for TMi in Eq. 13, 
we have:  
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 Normally, plots similar to Figure 2 taken from the historical data have shown that the 
value of T0 in Eq. 15 can be taken as 1 hour.  In this case, our NSM FFE reduces to: 
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Moreover, using Eq. 6 to estimate the historical counterpart ξHi, it is now possible to 
incorporate the FFE in the NSM parameter estimation (shown in the next subsection).   



2.3  Parameter estimation of the NSM 
 

The parameter estimation of the NSM is based on the solution of the following 
objective function: 
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where NSMi pertains to the component expression listed in Eqs. 1 – 5, and 16 while HISi 
pertains to the historical counterpart (see Appendix for historical counterpart of eq. (6)).  
Two combinations of components are used for parameter estimation for synthetic rainfall 
generation from the NSM.  Scheme A is a configuration based on the TCM in which eq. (17) 
adopts the hourly mean, hourly variance, hourly autocorrelation at lag-1, hourly third central 
moment, 12-hourly autocorrelation at lag-1, 24-hourly variance, and 24-hourly 
autocorrelation at lag-1.  Scheme B is essentially Scheme A, only that eq. (17) adopts the 
hourly FFE instead of the hourly TCM. 
 
2.4  Description of adopted streamflow modeling method 
 

Two distributed hydrologic models (DHM) were developed from OHyMOS (Ichikawa, 
2000). One model was developed for the Kamo river basin located in Kyoto Prefecture while 
another one was developed for Kamishiiba river basin in Miyazaki Prefectures in Japan.  
Both study areas were less than 300 Km2 in size for which the use of a single rain gauge is 
justified.  Rainfall-runoff conversion is implemented following a kinematic wave model 
based on a function similar to a discharge-stage relationship (Tachikawa et al., 2007).  
Parameters for these conversion equations are assumed constant for all the calculation 
elements in the river basin although internal systems are available for changing these 
parameters per sub-basin.   These parameters were estimated in separate studies (Tachikawa 
et al., 2007 for Kamo and Lee et al., 2007 for Kamishiiba).  The simulations conducted with 
these tuned river basin models were set for monthly runs at 5 minute computation time with 
streamflow results displayed per hour.   

 
 

3. EXPERIMENTAL SETUP 
 
Methods for calculating extreme floods are based on two procedures.  One procedure 

is based on the Japan Ministry of Land, Infrastructure, Transport and Tourism (MLIT) while 
another is based on the NSM synthetic rainfall.  For stationarity considerations, both 
methods are applied for historical rainfall pooled monthly during June, assumed to be 
representative of the rainy season in all study regions. 
 
3.1  MLIT method 
 

A procedure for estimating q-return period design floods from historical rainfall and 
streamflow simulation based on the Japan Ministry of Land, Infrastructure, Transport, and 
Tourism (MLIT, 2008) is designated here as M-I.  This procedure starts with assigning a 
design duration from which the quantile rainfall for all simulations is based.  For river basin 
areas such as Kamo and Kamishiiba, each less than 300 Km2 in size, this duration is specified 
as 24 hours.  The corresponding q-return period quantile rainfall depth is then calculated 



based on 24-hourly aggregated historical rainfall record.  A 24-hourly distribution to this 
total magnitude is assigned by searching through the historical records for the corresponding 
24-hourly maximum rainfall per month.  These maximum storms are then proportionately 
modified such that the total rainfall within the 24-hour period is the basis quantile rainfall. 

The MLIT then runs each 24-hourly storm in an appropriate model to simulate 
streamflow.  There are thus as many resulting hydrographs from these simulations as there 
are historical rainfall records.  Each hydrograph is then searched for its maximum value, 
yielding the estimate for the design flood, say Smq.  Consequently, M-I gives several q-return 
period design flood estimates based on the Smq of each simulated hydrograph. 

 
3.2  Method based on NSM rainfall 
 A second streamflow generating procedure is designated here as M-II.  We generate 
100 synthetic records of the target month for our applications here where return periods are 
within the 100 year value.  Each monthly record is then run through the appropriate river 
basin model for streamflow simulation.   

The resulting hydrographs are searched for maximum streamflow, resulting in 100 
values for flood frequency analysis.  The required quantile event, say Qmq, is then estimated 
from the cumulative distribution that best fits these empirical maxima (a log-normal 
distribution fitted by least squares is adopted although other distributions may be used).   
Two variants of this procedure correspond to the two NSM parameter estimation schemes of 
Sec. 2.3.  M-IIA adopts NSM O(Ω) Scheme A while M-II adopts that of Scheme B for 
parameter generation.   
 
 
4. RESULTING STREAMFLOW ESTIMATES 
 

Historical streamflow data was limited in this study.  Each historical June rainfall 
record is also run through the appropriate DHM and is considered a suitable substitute for 
historical streamflow.  Resulting quantile estimates from the synthetic streamflow and 
pseudo-historical counterparts shown here are limited to the hourly duration.  Quantile 
streamflow are estimated for the 10-, 20-, 30-, 50-, and 100-year return periods.   
 
4.1  Kamo river basin streamflow 
 
 The quantile-quantile (q-q) plot of Kamo pseudo-historical hourly streamflow maxima 
(Dis) appears in Figures 3a-b.  Each maximum streamflow value is given a plotting position 
pp proportionate to its rank in the overall record (pp=1/(i+1) in which i is rank).  The log-
normal distribution quantiles are used in this figure such that the independent variable (related 
to the event return period) corresponds to the inverse of the standard normal distribution 
(Gaussian distribution with zero mean and variance of unity) Φ−1 of pp while the dependent 
variable corresponds to the logarithm of Dis.  Linear regression gives us the parameters for 
the fit of this log-normal model that leads to the 95% confidence bands.   

We may then project the best fit line for the pseudo-historical streamflow (Figure 3a) 
to extrapolate the trend at return periods 10-, 20-, 30-, 50-, and 100-years.  There is a 
tendency of M-I to give a wide range of estimates for these target quantile floods in Figure 3a.  
In fact, the variation of M-I estimates becomes wider along with increasing return period.  
There is thus a pronounced ambiguity in the quantile estimates of M-I, making it 
disadvantageous despite its simple approach of using historical data alone.  In other words, it 
would be difficult to depend on M-I to quantify the quantile events given that we cannot 
justify which among the multiple estimates is the most likely value.   
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Figure 3. Quantile estimates from Kamo River Basin generated from (a) MLIT procedure M-I 
and (b) NSM based procedure M-II.   

 
This ambiguity does not appear in M-II, shown in Figure 3b.  Estimates appear to be 

quite consistent to the projections of pseudo-historical data.  Scheme B results appear to be 
the more rational estimate since this scheme includes POT rainfall maxima information in the 
FFE.  The advantage of using M-II, which involves synthetic rainfall generation, is therefore 
its clearer and unambiguous estimates of the quantile events.   
 
4.2  Kamishiiba river basin streamflow 
 

Similar q-q plots based on Kamishiiba results appear in Figures 4a-b.  Not all 
quantile estimates generated from M-I are within reasonable proximity to what can be drawn 
from the pseudo-historical counterpart, as shown in the lower return periods (10-year and 20-
year estimates), indicating poor performance.  In fact, quantiles should be evaluated at 
higher return periods (i.e.: higher than 100 years) before the M-I method yields estimates with 
high variation that lie along the pseudo-historical 95% region.  This however is not the ideal 
application since at times, one needs an estimate of lower return periods (i.e.: urban 
conditions/low priority flood protection works).  The M-I scheme therefore generates poor 
estimates of the required quantiles in Kamishiiba River Basin.   

Figure 4b shows the same estimates generated from M-IIA and M-IIB.  Most 
quantile estimates are within the historical 95%region of historical quantiles, indicating better 
performance over the M-I estimates (of Figure 4a).  In fact, both schemes perform 
appreciably well given that both yield almost the same low return period estimates and 
gradually diverge at higher return periods within the 95% historical region.  Therefore, either 
adopting M-IIA or M-IIB yields reasonable quantile estimates.    
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Figure 4. Quantile estimates from Kamishiiba River Basin generated from (a) MLIT 
procedure M-I and (b) NSM based procedure M-II.   



5. CONCLUSION 
 

A comparison between several methods was conducted that led to the advantage of 
using synthetic rainfall in the estimation of critical streamflow in river basins with limited 
historical rainfall   and/or streamflow data.   Synthetic rainfall was based on the Neyman-
Scott clustered Poisson rectangular pulse rainfall model (NSM).  The streamflow generated 
from modeling historical rainfall through a distributed hydrological modeling (DHM) was 
assumed as an equivalent to historical streamflow (referred to as pseudo-historical 
streamflow).   

Results indicate that an established method from the Japan Ministry of Land, 
Infrastructure, Transport, and Tourism (MLIT) for estimating design floods from historical 
rainfall have several limitations.  Estimates from this method (for the Kamo River Basin in 
Kyoto) vary widely for any return period due the use of multiple design rainfall that are each 
plausible occurrences of the quantile event.  In one application (Kamishiiba River Basin in 
Miyazaki), results were in gross error for low return periods.  Though this method involved 
only historical rainfall, estimates were found to be generally unreliable.   

Another method involving NSM synthetic rainfall generation appears to be more 
rational in both form and delivered results.  There were no ambiguous or erroneous estimates 
from the results of this method.  Estimates based on this method are therefore more reliable 
and recommendable than those of the former type.   
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