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Model identification is the most fundamental task in rainfall-runoff modeling,
However, it is not easy due to various uncertainty sources involved in modeling
In spite of their significant effects on prediction results, a current

processes.
rate them into the modeling process.

modeling framework fails to fully incorpo
This paper aims to outline an alternative rainfall-runoff modeling framework
new modeling framework consists of two conditioning
steps. The first step is that a set of possible models is evaluated multi-
dimensionally with respect to model performance, model structural stability,
and parameter identifiability. Next, the parameter space of the selected model

structure in the first stage is conditioned directly or indirectly by adding

physical or knowledge-based complementary constraints into the parameter
s are implemented by the

identification procedure. Finally, model prediction
fltered model structure and parameter set(s) through the two conditioning

steps in the new modeling framework.

under uncertainty. The

1. Introduction

The primary objective of modelers is to identify an appropriate model
including its optimal parameter set which is suitable for modeling purpose,
catchment characteristics and data.l Beven? reviewed the basic criteria
for model choice. They are summarized as follows: (1) model availability;
(2) model predictability for hydrological variables; (3) model reliability;
(4) model suitability within the time and cost constraints of modeling
objectives. However, he warned that all the available models are easily
rejected by these criteria because of inadequate conceptualizations of the
models and infeasibility of field data supporting model parameters fully.

39
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Therefore, a more effective guideline is necessary to enable modelers to
either confirm possible predictor(s) or reject unreliable one(s).

In many hydrologic model applications, the model identification
has been conducted by conditioning their predictions to any available
observations at the catchment of interest. This procedure is usually called
calibration. Then, the calibrated model is verified against different time
series or basins not used during calibration. This procedure is called model
validation or verification and it commonly follows Klemes's hierarchical
validation scheme.?

However, many studies’?* pointed out that this conventional type of
model identification is basically required but is insufficient to adequately
test the suitability of a model because of its lack of dealing with uncer-
tainty involved in modeling processes. One of the significant problems in the
traditional modeling framework is that often, different parameter combi-
nations and even different model structures can become equally good repre-
sentations of catchment responses. This is entitled ‘equifinality’®® and
it has become one of the noticeable issues in the hydrological modeling
community such as the international working group on Uncertainty
Analysis in Hydrologic Modeling, a part of the Predictions in Ungauged
Basins (PUB).

Beven® outlined the desirable modeling framework considering
uncertainty and then Wagener et al.*® materialized it by incorporating a
parsimonious model with uncertainty analysis tools such as Multi-Objective
Complex Evolution Method (MOCOM, Yapo et al.”) and Dynamic
Identifiability Analysis (DYNIA, Wagener et al®) They emphasized that
for building the advanced modeling framework, uniqueness to figure out the
true representation of a hydrological system by calibration and validation
steps has to be abandoned, instead, both extended model evaluation
and enhanced parameter identification are necessary to confirm reliable
predictor(s) or to reject inadequate one(s).

In this regard, this paper proposes an alternative rainfall-runoff
modeling framework under uncertainty, which consists of two conditioning
processes attempting to identify more reliable model structure(s) with its
parameter set(s). This framework is the extended version of the frameworks
proposed by Beven® and Wagener and Gupta.* It may provide a more
useful guideline for model identification in practical rainfall-runoff model
applications.
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2. Description of a New Rainfall-Runoff Modeling Framework
under Uncertainty

Figure 1 illustrates the alternative rainfall-runoff modeling framework under
uncertainty. It is established by two conditioning processes: enhanced
model evaluation and further parameter identification using additional
information. Initially, a set of model structures is prepared for model
evaluation. Here, it is assumed that all model structures can be potentially
useful simulators, unless obvious evidences appear for it to be rejected.

2.1. First conditioning process: Enhanced model evaluation

At the first conditioning stage, three different evaluative criteria are applied
to the competing models. It allows under-performing models with respect
to these evaluative indices to be rejected at this stage. The first measure
of model evaluation is Model Performance Index (MPI), which assesses
whether the models are able to simulate the observed streamflow accurately
or not. Second is Model Structural Stability Index (MSSI) for assessing
whether the model structures can represent various local response modes
(e.g. low and high flows) with a single parameter set. The last measure is
Model Parameter Identifiability Index (MPII) for evaluating whether the
model parameters are well identified or not within a predefined feasible
parameter space. As a result, the anticipated criteria values will give some
objective basis to search for the model with a good balance between
prediction accuracy, structural stability, and parameter uncertainty.

Figure 1 includes the schematic model space with respect to the
proposed three evaluative criteria. Here, each box indicates the testable
model structure and the black box is the best model leading to good model
performance, stable model structure and high parameter identifiability
while the dark grey box on the bottom left in the three dimensional model
space, is referred to as the unideal model.

The new modeling framework emphasizes that one dimensional model
evaluation, which is based only on single criterion, results in many possible
predictors, It implies that many models can not be rejected by only MPI
while they provide different values of both MSSI and MPIIL. For example,
both Model N (the ideal model) and Model N — 1 can provide equally
good model performance measures but Model N —1 is worse than Model IV
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in terms of other measures for assessing structural and parameter
uncertainties.' As a result, additional criteria in the proposed model
evaluation procedure can provide richer information enabling modelers to
distinguish a balanced model, which lead to accurate and less uncertain
prediction result, among a number of possible simulators.

2.2. Second conditioning process: Further parameter
identification

However, even the best balanced model structure still suffers from the
equifinality problem. Plausible parameter combinations that yield similarly
good outcomes are widely distributed in the parameter space. In the three
dimensional model space of Fig. 1, the light grey elliptical regions of each
model (i.e. P; ; is a model parameter where 7 is the number of parameter to
be calibrated and j is the number of available model structure) indicate the
constrained parameter space by model calibration with streamflow data and
all parameter sets within these regions provide objective function values as
good as the global optimal sets marked by a symbol x. Note that each model
structure has perhaps different parameter dimensions but parameter spaces
of all models are represented schematically in three dimensions. In rainfall-
runoff modeling, models are usually calibrated based only on streamflow
data. However, it is just a basic requirement but insufficient information
to identify model parameter(s) reliably. Kuczera and Franks® pointed out
that a potentially more powerful approach is the use of additional data for
further parameter identification.

The second conditioning process is therefore imposing complementary
information on the constrained parameter space of the finally-selected
model in the first conditioning stage. If additional information on
hydrological responses of a catchment are available sufficiently, these
constraints are used to directly reject unreliable parameter combination(s).
However, despite effectiveness of complementary information, this
approach is still limited to the experimental catchments'® because of
insufficient comparable measured data with multiple hydrological variables.
If additional data is not available, the alternative approach in the second
conditioning process is manual rejection of non-physical parameter set(s). It
means that some of behavioral parameter sets, which contain conceptually
unrealistic values, can be removed manually by the judgment of hydrologists
or well-trained modelers. Although it is likely to receive criticism because of
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its subjectivity, manual calibration is still used in operational hydrology.!
At all events, it is sure that the complementary information allows for
further rejection or corroboration of model parameters, irrespective of
whether it is measurable or not.

2.3. Model prediction

Finally, the surviving model with its behavior parameter sets should be
retained until those that violate new evaluative criteria are found and then
they are used for runoff prediction. In other words, the prediction result of
the new modeling framework is not a single output sequence but a set of
hydrographs.

3. Detalils of Evaluative Criteria Used in the First
Conditioning Step

The purpose of the extended model evaluation is fundamentally to
understand characteristics of each model structure and establish a
preference between competing model structures with respect to three
different criteria, model performance, structural stability and parameter
identifiability. The ideal model may have a perfect (or stable) structure,
which provides accurate and reliable prediction results. In addition, its
response surface to parameters may be very convex or concave so that
the global optimum can be easily found out using effective automatic
optimization algorithms. One dimensional model evaluation based only on
model performance, which is usually adopted in traditional model testing,
is replaced by a three-dimensional one in order to provide a more extensive
guideline with respect to selecting an adequate model.

3.1. Model performance index (MPI)

Model performance is a basic benchmark to support not only model
selection but it is also used when discussing results with other hydrologists
or stakeholders. It is typically judged by using an objective function which is
to be minimized or maximized according to the modeling purposes. A wide
range of statistical and hydrological objective functions is available. In
general, these objective functions contain a summation of the error term
and the summation of the squared errors, which is often used to avoid the
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canceling of errors of opposite sign. Boyle et al.'? pointed out that global
behavior could be described by overall measure like Root Mean Square
Error (RMSE) but this aggregation of error was likely to decrease the
amount of information in data. They recommended a separation of runoff
time series into specific response periods to investigate the influence of
individual model parameter on both global and local behaviors. Indeed,
some models can reproduce the specific local behaviors (e.g. peak or
rising/recession flows) very well while their overall model performances
are not acceptable. For assessing model performance in the new modeling
framework, the hydrograph is simply divided into two components (i.e.
high and low flow periods) by the threshold, defined as the mean value
of observed discharge data. The performances of each model structure are
evaluated by Nash-Sutcliffe Coefficient (NSC) for two periods and then the
average of the two measures is referred to as MPI, which is defined as:

Nyign .
t; (QObS (t) — Gsim (t))
NSCngh - 1 B Igligh . (1)
2. (qobs(t) — qulgh)z
t=1
NLow
Z (QObs (t) — 4sim (t))2
NSCrow = 1 - £ (2)
E (QObs (t) - qgl(;);u)Q
t=1
MPT = 0.5(NSChigh + NSCrow) (3)

where qops(t) is the observed discharge at time step t; goim(t) is the
simulated discharge; qufh and gL¢¥ are the mean observed discharge over

the simulation periods, Ngign and Ny, respectively.

3.2. Model structural stability index (MSSI)

Structure error is an unavoidable problem in hydrological modeling since
a hydrologic model is just a conversion and simplification of reality, thus
those models only represent aspects of conceptualization or empiricism of
modelers. In consequence, output time series of hydrologic models are as
reliable as hypothesis, structure of models, quantity and quality of available
data, and parameter estimates. Gupta et al'® demonstrated that one
parameter set might be insufficient to represent the entire behavior of the
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catchment due to the imperfection of model structures. In other words,
a subjective selection of objective functions for calibration of conceptual
hydrologic models results in an overemphasis on different response modes.
Therefore, the dependency of model performance on objective functions can
be used to account for model structural stability. Two objective functions,
Simple Least Squares (SLS) and Heteroscedastic Maximum Likelihood
Estimator (HMLE) are recommended for evaluation of model structural
stability. SLS is expressed as:

N
SLS =D (¢ — a:(0))? @)

where ¢f% is observed streamflow value at time t; q§") is simulated

streamflow value at time ¢ using a parameter set § and N is the number
of flow values available. It has a feature that residuals between observed
and simulated discharge are evenly weighed throughout a event, thus a
parameter set, which matches well around peak discharge, will be obtained.
HMLE is the most successful form of the Maximum Likelihood
criteria, which properly accounts for non-stationary variance in streamflow
measurement errors'®, This new measure containing weight provides more
balanced performance across the entire flow range and it is calculated as:

N
1 Zwtft
o=t
HMLE = (5)

(fi)

where g; = ¢?** — q:(0) is the model residual at time ¢; w; is the weight
assigned to time ¢ computed as w; = tz (’\_1); figi™e is the expected
true flow at time ¢; A is the transformation parameter which stabilizes the
variance. Yapo et al.” recommended the use of f; as observed flow for more
stable estimator.

Finally, the MSSI is formulated as:

N

> (gses(t) — qumre(t))? (6)

t=1

1
MSSI = , | —
N
where N is total number of simulation time step; gsrs(t) and quprg(t) are
the simulated discharges by each optimal parameter of SLS and HMLE,
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respectively. Here, the lower value of MSSI indicates the more stable model
structure. :

3.3. Model parameter identifiability index (MPII)

Parameter identifiability implies the level of “uniqueness” of parameters.
It means that a well-identified model has a certain (or global optimal)
parameter value while a poorly-identified model accepts many behavioral
parameter values, which can provide model performance measures as good
as the value estimated by the best-performing parameter. Wagener et al.8
proposed a simple measure of parameter identifiability based on Regional
Sensitivity Analysis (RSA, Spear and Hornberger!®). The uniform random
sampling method used in their research (Wagener et al.) is able to
extrapolate the parameter space easily but is computationally inefficient
since a large number of samples are necessary to protect misleading
results (Feyen et al.'®). On the other hand, Markov Chain Monte Carlo
(MCMC) methods generate samples from a Markov chain in an attempt
to estimate a stationary posterior parameter distribution and it can be
useful for high dimensional optimization problems (Kuczera and Parent!7).
The Shufled Complex Evolution Metropolis (SCEM) algorithm is an
effective and efficient evolutionary MCMC sampler which has enhanced
search capability and operates by merging the strengths of the Metropolis
algorithm, controlled random search, competitive evolution, and complex
shuffling (Vrugt et al.'®).

This algorithm can provide not only optimal parameter set but also
its underlying stationary posterior distribution within a single optimization
run. In these posterior distributions of individual parameters, the parameter
value corresponding to the highest density indicates the optimal parameter
value while other parameter values within these distributions are referred
to as behavioral parameters. Therefore, SCEM can be used to estimate
posterior distributions of individual parameters and then investigate the
uniqueness of calibrated parameters. Here, the highest density value of each
distribution is used as the indicator of parameter identifiability. Then, the
mean of these maximum identifiability values of each parameter is regarded
as MPIL. Moreover, the uncertainty associated with parameters from the
estimated posterior distributions is quantified and it gives the basis for
making probabilistic predictions associated with parameter uncertainty.
Figure 2(a) shows the example of posterior parameter distribution. In this
figure, the value, marked by open circle, is the indicator of parameter
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Fig. 2. (a) Example of estimation of parameter identifiability and (b) simulation
uncertainty boundary associated with the behavior parameter sets within the posterior
distribution.

identifiability and the parameter value corresponding to this is the best-
performing parameter value. The distribution containing the sharper
peak indicates that the model parameter is identified better within the
feasible parameter space. Figure 2(b) presents the hydrograph simulation
uncertainty estimated by the parameter sets within posterior parameter
distributions.

4. Need of Complementary Constraints for Further Parameter
Identification (Direct Rejection of Non-Physical Parameter
Set)

A complex rainfall-runoff model due to over-parameterization can permit
multiple alternative flow pathways leading to equally good hydrological
outputs. Such a model usually has the poor parameter identifiability
showing the uniform posterior parameter distribution. Furthermore, the
commonly used streamflow data to evaluate such a model does not contain
sufficient information on these possible flow pathways and thus, in spite
of our deep faith in the computer-based automatic optimization tools,
the model still has numerous plausible parameter combinations (Franks
et al.1?). Therefore, additional information is needed to offer a step forward
to identifying the minimum reliable parameter sets. It can be done by
further constraining the feasible parameter space.

Figures 3(a) and (b) show the parameter identification processes based
on streamflow and multi-response data, respectively (Mroczkowski et al.2?).
The strategy shown in Fig. 3(a) only uses hydrological response A for both
calibration and validation while response B is totally disregarded. This kind
of framework represents the traditional split-sample test using streamflow
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Fig. 3. Schematic diagrams of parameter identification based on (a) streamflow data
and (b) multi-response data.

data alone. It is conceivable that many models cannot be rejected with
regard to response A. The parameter space constrained by only response A
contains mumerous plausible parameter sets. For example, two parameter
sets, a and b have the same model performance measure value, 0.95 because
they are inside the same contourline of NSC. On the other hand, the
alternative strategy illustrated in Fig. 3(b) uses response A for calibration
but both responses are used for validation. This strategy provides much
greater opportunity to select reliable parameter set(s) or reject unreliable
one(s) because it imposes greater constraint on the parameter space. The
previous parameter space based only on response A has the intersection,
which comes from the additional response B. It means that parameter set b
can be regarded as a non-physical parameter set not satisfying both physical
constraints (i.e. outside the intersection) such that this parameter set will
be rejected and not used for model prediction (i.e. reduction of parameter
uncertainty).

Experimental methods such as isotope tracers, isotopic hydrograph
separations and stream water residence time have been used as additional
physical constraints for reducing parameter uncertainty in water quantity
and quality modeling. However, these approaches that attempt to yield
multiple output variables usually require the reformulation of models
by adding another conceptual parameters. Ultimately, it again results
in the decline of parameter identifiability. Therefore, to avoid over-
parameterization, the desirable features of the enhanced parameter
identification using multi-response data are as follows: (1) provide the
evidence capable of rejecting unreliable parameter sets; (2) do not cause
over-complexity due to numerous parameters that has to be calibrated.

Finally, statistical error estimation will be used to evaluate the
improvement of simulated variables through the enhanced conditioning
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processes and demonstrate superiority of the proposed method to currently-
available model identification methods. Therefore, filtered behavioral
parameters in the second conditioning process are more physically-sound
and also they can provide more reliable prediction results than the modeling
case without additional constraints.

5. Conclusions

This paper has discussed the alternative rainfall-runoff modeling framework
under uncertainty. Two conditioning processes incorporated into the new
modeling framework was introduced. In the first step of the framework,
a set of possible model structures was evaluated multi-dimensionally
with respect to model performance, model structural stability, and
parameter identifiability. The mean value of NSCs for low and high flow
periods was proposed as MPI to assess the model predictability. The
discrepancy between hydrographs reproduced by two different objective
functions, SLS and HMLE was referred to as MSSI to assess the model
structural uncertainty. In addition, the highest value of posterior parameter
distribution was estimated by the stochastic optimization algorithm, SCEM
and then it was adopted as MPII to evaluate the parameter identifiability.
In the second conditioning process of the new modeling framework,
the parameter space of the selected model structure in the first stage
was conditioned directly or indirectly by adding physical or knowledge-
based complementary constraints into parameter estimation procedure.
The further parameter identification using observable multi-response data
(i.e. direct filtering of non-physical parameter set) basically requires the
capability providing apparent evidences to reject the unreliable parameter
combination(s). Also, it should not cause over-parameterization because
of over-complexity by either revision or reformulation of the model with
additional parameters that is likely to worsen parameter identifiability and
in turn, cause the equifinality problem.
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