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ABSTRACT

The applications of data assimilation techniques have been increasing to enhance forecasting considering
various sources of uncertainties. As recently introduced data assimilation techniques, Sequential Monte Carlo
(SMC) methods are applied for real-time forecasting of river discharge. Two hydrologic models, Storage
Function (SE) model and Water and Energy transfer Processes (WEP) model, are applied for the middle-sized
Japanese catchment by SMC methods. In case of SF model, two different approaches of SMC methods are
implemented: state only updating and dual state-parameter updating. Various SMC methods such as ASIR, RPF
with MCMC move step and SIR particle filter are also compared. In case of WEP model, accumulated soil
moisture is used as hidden state variable and spatial distribution of soil moisture is updated by every time step.
Despite limited information on physical characteristics of soil and aquifer, simulation results of WEP model
using SMC show relatively enhanced forecast compared to those of SF model,

1 INTRODUCTION

Uncertainty in the predictions of science is an issue of great current relevance in relation to the
impacts of climate change, protecting against natural and man-made disasters, pollutant transport and
sustainable resource management (Beven, 2009). Recently, the applications of data assimilation
techniques have been increasing to enhance forecasting considering various sources of uncertainties.
Among data assimilation techniques, sequential Monte Carlo (SMC) methods are Bayesian learning
process in which the propagation of all uncertainties is carried out by a suitable selection of randomly
generated particles without any assumptions about nature of the distributions. SMC has the advantage
of being applicable to non-linear, non-Gaussian state-space models. Over the last few years, the
application of these powerful and versatile methods has been increasing, e. g., pattern recognition,
weather forecasting, bioinformatics and hydrology (Moradkhani et al., 2005; Smith et al., 2009). In
this study, SMC methods are applied for real-time forecasting of river discharge using multiple
hydrologic models from conceptual one to process-based and spatially-distributed one. As hydrologic
models, Storage Function (SF) model and Water and Energy transfer Processes (WEP) model (Jia et
al., 2009) are implemented for the middle-sized Japanese catchment. In case of SF model, data
assimilation is performed by two different approaches of SMC methods: state only updating and dual
state-parameter updating. In dual state-parameter updating scheme, probabilistic distribution of
parameters is treated as time-varying and structural uncertainty of hydrologic models is assessed using
SMC, while state only updating scheme considers ensemble of different state variables having the
same parameter set calibrated from previous events. In case of WEP model, state only updating
scheme is performed in the preliminary simulation. Accumulated soil moisture is used as hidden state
variable and spatial distribution of soil moisture is updated every time step.

2 METHODOLOGY

2.1 Sequential Monte Carlo
Consider a generic dynamic state-space model which can be described as follows:

x, = f(x,_,0,u)+o, w, ~NO,W,) (1)
y/:h(x159)+‘// V/NN(OaVI) ()
where x, € R is the n_ dimensional vector denoting the system state at time¢. The operator

fiR"™ > R™and h:R"™ > R™ express the system transition in response to the forcing data u,,

parametersd. o, and v, represent the model and the measurement error, respectively.
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SMC is based on point mass (“particle”) representations of probability densities with associated
weights (Arulampalam et al., 2002).

N
px | Y)Y wis(x, —x/) 3)
i=l

where x! , w! denote thei th particle and its weight, respectively, and &() denotes the Direc delta

function.

Since it is usually impossible to sample from the true posterior PDF, an alternative is to sample

from a proposal distribution, also called importance density, denoted by q(x, | y,). The recursive

weight updating could be derived as follows:

p(z, | x/’)p(%, | xli—l) (4)
q(x; [ %5 9,)

Several variants of SMC methods such as Sequential Importance Resampling (SIR), Auxiliary

SIR (ASIR) and Regularized Particle Filter (RPF) have been developed to overcome the degeneracy
phenomenon, selection of importance density and sample impoverishment.

i i
W, LW,

2.2 Parameter inference

For the unknown parameters, the concept of “artificial evolution” could be applied for. That
means, parameter @ is replaced at each time adding an independent, zero-mean normal increment to
the parameter as follows:

0,=0_,+¢, & ~NQO,s'Var]) %)
where, £, is random noise, ¥a is the variance of parameter particles at time k before resampling
and s is a small tuning parameter.
3 IMPLEMENTATION
3.1 Study area

Hydrologic models were applied to the Katsura river
catchment (Figure 1) to forecast the river flow through
 SMC methods. This catchment is located in Kyoto, Japan
and covers an area of 1,100 km* (887 km? at the Katsura
station). There are 13 rainfall observation stations and 6
river flow observation stations within the catchment. There
is the Hiyoshi dam whose outflow data was used as the
upper boundary condition of river discharge in both SF
model and WEP model.

3.2 Storage function model
The storage function (SF) model (Kimura, 1961) is | ¢ 10 o o

bt s e e -

one of the most commonly used conceptual models for
flood runoff prediction in Asian countries due to its simple
numerical procedure and proper regeneration of nonlinear
characteristics of flood runoff. State-space form of SF model is as follows:

Figure 1. Katsura river catchment

ds s(t) v
L ort-T)-| =2 ~EO+ 6
o r(t=1,) ( P ) N+, (6)
A, s(t))l/p
(D= down + t—-T 7
qann( ) 3. 6 ( k qdam( dam) ( )
qt = qA\'im(t)_‘_vl | (8)
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| where, s is catchment storage, 7 is time (hour), 7, is effective rainfall (mm), E is evapotranspiration
[

(mm) , Agown is the down area from the dam (kmz), gyim is simulated river discharge (m3/s), ¢, and G
are observed discharge at Katsura station and Hiyoshi dam (m*s), T,andT,,, are lag time parameter

of catchment and dam (hour), respectively, and %, p are model parameter. @, and v, are the state and the

SF model was simulated by SIR particle filter with 1,000 particles. Figure 2 shows 3-hour-lead
forecasting results by two different approaches of SMC methods (state only updating and dual state-
parameter updating) compared to observation and deterministic prediction. Forecast by dual state-
parameter updating (Figure 2(c) ) shows generally good conformity between observed and simulated
discharge, while deterministic prediction and forecast by state only updating scheme (Figure 2(b) ) do
not to reproduce the river flow properly due to unsuitable parameter sets calibrated from previous
events. Figure 3 illustrates traces of parameters during simulation. Initial distribution for parameters
was given from prior information (calibrated from previous flood events).
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Figure 2. Hourly precipitation and river discharge from 11 to 17 July 2007. Black dots represent observed
discharge. Blue line and area represent mean value and 95% confidential interval of 3-hr-lead forecast of
: the storage function model using SMC methods, respectively. Dashed line represents a deterministic

modeling case.

3.3 WEP model

Water and Energy transfer Processes (WEP) model is a distributed hydrological model to be
developed for simulating spatially variable water and energy processes in catchments with complex
land covers (Jia et al., 2009). State variables include depression storage on land surfaces and canopies,
soil moisture content, land surface temperature, groundwater tables and water stages in rivers, etc
(Figure 4). Ensemble simulation of sixty particles was conducted on a multi-processing computer by
Message Passing Interface (MPI) techniques. Accumulated soil moisture depth was selected as a
hidden state variable and spatial distribution of soil moisture was updated every time step. Although
information on physical characteristics of soil and aquifer was very limited in this catchment,
simulation results of WEP model by SMC (Figure 5) show relatively enhanced forecasting compared “
to those of SF model. |

4 CONCLUSION

Sequential Monte Carlo methods were applied for river flow forecasting using multiple
hydrologic models. In case of SF model, data assimilation was performed by two different approaches

I
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ation of SMC methods: state only updating and dual state-parameter updating. Forecast by dual stat-

Ga parameter updating showed generally good conformity between observed and simulated discharge,
aam ) . . . : H

Leter while deterministic prediction and forecast by state only updating scheme did not to reproduce the

| river flow properly due to unsuitable parameter sets. In case of WEP model, accumulated soil moisture

d the was used as hidden state variable and spatial distribution of soil moisture is updated by every time step.

Despite limited information on physical characteristics of soil and aquifer in the applied catchment,
lead simulation results of WEP model by SMC showed relatively enhanced forecasting compared to those
tate- of SF model.
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Figure 3. Traces of parameter k, P, TL of the storage function model using SMC methods from 11
to 17 July 2007. Black lines represent median value and gray area represents 95% confidential interval.
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Figure 4. Vertical structure of WEP model
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