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Abstract The large scale reservoir plays an important 
role in modern water resources management by 
regulating the water to address severe flood and drought 
problems. Therefore, the proper planning of water 
resource availability based on uncertainty climate 
change impact is very necessary. The objective of this 
study is to evaluate the changes of water storage and 
outflow based on present and past operation with the 
different future reservoir inflow data by using 
Atmospheric General Circulation model (MRI-
AGCM3.2S) forcing data which is jointly developed by 
Meteorological Research Institute of Japan and Japan 
Meteorological Agency. For each 20-km grid cell, the 
surface runoff generation of MRI-AGCM3.2S was used 
to simulated river discharge at the Sirikit reservoir by a 
distributed flow routing model (1K-FRM) based on the 
kinematic wave theory. In this study, distribution 
mapping methods are applied to raw daily river 
discharge simulated data for remove systematic bias 
between model and observed data. After bias correction 
to daily discharge achievement, the future corrected 
reservoir inflow of different scenarios were given to 
reservoir operation model algorithms and using the 
Artificial Neural network (ANN) for calculation the 
future release flow and reservoir storage based on 
remain the downstream water requirement and amount 
of water losses in this reservoir same as present climate 
condition. The evaluation of future reservoir operation 
based on present rule curve will show the necessary 
decision way to revise or improve current operation to 
adapt to probably water resources availability.                
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Introduction 
 
Water is indispensable for all forms of life and is 
needed, in large quantities, in almost all human 
activities. According to the 2013 Intergovernmental 
Panel on Climate Change (IPCC), the global water cycle 
will change, with increases in disparity between wet and 
dry regions, as well as wet and dry seasons, with some 
regional exceptions. Water resources is an increasingly 
limited and highly essential resource for many countries 
where agriculture is the main income of the economy 
corresponding with ensures the well-being of the people. 
The proper planning of water resource availability based 
on uncertainty climate change impact is very necessary; 
because, the projection of hydrologic inflow data can 
support and help government stakeholder and reservoir 
operator to adapt their decision making to release the 
water subjected to the rule or constraint in advance and 
be consisted of the sustainable development plan in 
future. The large scale reservoir plays an important role 
in modern water resources management by regulating 
the water to address severe flood and drought problems. 
It is the effective tool to store water when severe flood 
occurs for mitigation of the huge loss, damage of lives 
and economics. Not only the excess water resource 
problem, but the inadequate water supply in Thailand 
also experienced the extreme drought. Therefore, to 
investigate the current reservoir operation is an 
important and interested finding to respond to future 
climate change for water management effectively and 
cope with future flood event as well. Therefore, the 
proper planning of water resource availability based on 
uncertainty climate change impact is very necessary. 
The objective of this study is to evaluate the changes of 
water storage and outflow based on present and past 
operation with the different future reservoir inflow data 
by using Atmospheric General Circulation model (MRI-
AGCM3.2S). 
 
Study area 
 
The Sirikit reservoir with coverage catchment area of 
13,130 km2 is located of the midstream of Nan River 
basin in Thailand as shown in Fig.1. The upstream of 
the Sirikit reservoir is a mountainousarea which is not 
affected by major flow regulations or any other direct 
human activities impacts.  
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Fig.1 Map showing the study area, reservoir location 
and spatial 20 km x 20 km square grid of MRI-
AGCM3.2S. 
 
The continuous time series data of observed inflow into 
the reservoir is available for the period of 1974-2013 (40 
years). Its climate is tropical with distinctly clear dry 
and wet seasons. The seasons are defined as follows: the 
dry season starts from November until April and the wet 
season starts from May until October. 
 
Methodology 
 
The overall of this research can be divided into river 
discharge prediction part and reservoir operation 
assessment part for present and future climate scenarios.  
To estimate river flow for water resource assessment, 
the hydrological model is widely represented the 
interaction between hydrologic cycle element such as 
precipitation, soil Moisture, river flow and 
evapotranspiration. Several impacts of climate change 
studies with distributed hydrological model were 
conducted at the Chao Phraya River Basin in Thailand 
(Wichakul et al., 2015; Hunukumbura and Tachikawa, 
2012). In this study, the 1K-FRM distributed flow 
routing model was chosen to handle input spatial data 
such as gridded rainfall; therefore, this model can 
applicable to access reservoir inflow under a changing 
climate as well. 1K-FRM is originated development in 
Hydrology and Water Resources Research Laboratory at 
Department of Civil and Earth Resources Engineering, 
Kyoto University.1K-FRM is a distributed flow routing 
model based on kinematic wave flow approximation. 
The kinematic wave model is conduct to all rectangular 
elements gridded to link the water to downstream 
associate with the derived catchment model. Basically, 
the selecting of Digital Elevation Model (DEM) data 
used in catchment model is HydroSHEDS (Hydrological 
data and maps based on SHuttle Elevation Derivatives at 
multiple Scales) provides hydrographic information in a 
comprehensive and consistent format for both local and 
global-scale applications (Lehner, 2006).1K-FRM used 
30 arc-second resolutions (approximately 1 kilometer at 

near equator area) as a catchment model.  The flow 
direction is defined into 8 directions which assigns flow 
depends on the different elevation with in a direction of 
steepest downward slope as illustrated in Fig. 2.The 
basic kinematic wave equation for each rectangular 
slope elements is 
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where io is slope gradient; n is the Manning’s 
roughness coefficient; and B is the width of the flow. 
There are two main parameters inside 1K-FRM model 
which consist of the Manning’s roughness coefficient 
for the slope unit ns and Manning’s roughness 
coefficient for the river channel unit cell nr. In this 
study, the parameter of ns = 0.03 m-1/3s and nr = 0.1 m-

1/3s were used for the suitable values. 
General circulation models (GCMs) have been 

commonly used in climate change impact studies. The 
several studies of application to use GCMs in Chao 
Phraya River Basin and surrounding River Basin were 
conducted. For instance, Hunukumbura and Tachikawa 
(2012) utilized the runoff projected by MRIAGCM3.1S, 
which showed the increasing of extreme discharge at the 
upper part of Chao Phraya River Basin and the 
decreasing of monthly discharge in October at the Pasak 
River basin. Kure and Tebakari (2012) showed the 
increased tendency of the mean annual river discharge 
and annual maximum daily flow at the NakhonSawan 
station located at the downstream of the four major 
rivers in the in upper Chao Phraya River Basin using the 
precipitation and temperature projected by MRI-
AGCM3.1S and MRI-AGCM3.2S. Champathong et al. 
(2013) assessed the uncertainty of river flow projections 
using the outputs of MRIAGCM3.1S and MRI-
AGCM3.1H.Kitpaisalsakuiet al. (2016)  also used MRI 
GCM data to assesses the impact of climate change on 
reservoir operation in Central Plain Basin of Thailand. 

The GCM outputs used for this research were 
gridded runoff generation data from MRI-AGCM 3.2S 
(Mizuta et al., 2012), where ‘S’ refers to super-high 
resolution developed by Japan Meteorological Agency 
(JMA) and the Meteorological Research Institute (MRI). 
The AGCMs grids covering the Sirikit reservoir study 
area were total of 88 grids (8 columns and 11 rows) with 
the spatial resolution 0.1875 degree (approximately 20 
km), located between the latitude of 17 degrees 42 
minutes and 19 degrees 35 minutes north and the 
longitude of 100 degrees 7 minutes and 101 degrees 26 
minutes east.To obtain the high resolution of climatic 
forcing data is to used downscaling technic by an 
atmospheric general circulation model (Kitoh et al., 
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2015).The high-resolution that is obtain the observed or 
projected sea surface temperature (SST) as boundary 
condition. This type of mechanism simulations, which 
uses the observed present day inter-annually varying 
SST plus ensemble mean future SST changes obtained 
by CMIP-class models, can minimize the effects of 
climate model bias. Based on the SST data of 28 CMIP5 
model, the different SST spatial patterns are analyzed by 
a cluster analysis of these 28 CMIP5 model. After that, 
the 28 CMIP5 modelclassified into 3 clusters from 8, 14 
and 6 models of cluster 1, cluster 2 and cluster 3, 
respectively.   

That model has a horizontal resolution of 
triangular truncation 959 (TL959) and a vertical 
resolution of 64 levels (top at 0.01 hPa) to transform 
grid uses 1920* 960 grid cells with corresponding to 
approximately a 20 km grid interval. The 20-km mesh 
MRI-AGCM3.2 was employed in each 25-year time-
slice experiment for the present-day climate (1979-
2003) and late 21stcentury climate (2075-2099) 
scenarios with the Representative Concentration 
Pathway (RCP) 8.5 that refers to the final radiative 
forcing achieved by the year 2100 around 8.5 watts per 
square meter (W/m2).Moreover, the cluster analysis also 
analyzed the ensemble SST to classify the characteristic 
pattern of SST into three groups as following 1) cluster 
1: Uniform warming in the tropics zone pattern or in the 
both hemispheres, 2) Cluster 2: Larger warming over the 
central equatorial Pacific (so-called EI Nino-like 
pattern) and 3) Cluster 3: Larger warming in the north 
Indian Ocean and north-west Pacific pattern. Therefore, 
the future climate projection was combined of different 
SST (4 future SSTs) to assess the uncertainty of future 
water availability.However, for 20 km grid output data 
provide a new cumulus convection scheme (Yoshimura 
et al, 2015), called the “Yoshimura scheme” only.   For 
each 20-km grid cell, the various hydrological 
components of MRI-AGCM 3.2S such as precipitation, 
evaporation, transpiration and surface runoff generation 
were calculated through the land surface scheme as 
shown in Fig 2.The runoff generation of MRI-
AGCM3.2S was used to simulated river discharge at the 
Sirikit reservoir by a distributed flow routing model 
(1K-FRM) based on the kinematic wave 
theory(Tachikawa and Tanaka, 2013).All period of 
simulation has been performed at a spatial resolution of 
1 km and temporal resolution of one day. For the 
verification data, the observed time series of daily 
inflow was obtained from the Electricity Generating 
Authority of Thailand (EGAT).     

A recent bias correction method based on a 
relationship of cumulative distributions (CDFs) of the 
GCMs and observation data has been commonly used 
for hydrologic simulations and climate change 
studies.The distribution mapping technique adjusts all 
particles of the cumulative distribution function (CDF) 
of projected data with GCM outputs by using the CDF 
of observation and construct a transfer function to 
convert the projected data using GCMs to corrected 
data. 

 

 
 
Fig.2 The framework diagram river discharge 
simulation. 
a) Land surface generation data of MRI-AGCM3.2S fed 
into river discharge simulation in a grid. b) Schematic 
drawing of a catchment and flow routing model using 
HydroSHEDS DEM. 
 
All bias correction methods of quantile mapping have to 
initiate by 1) sorting long-term observation and 
simulation river discharge data to create CDFs for each 
calendar month (Jan-Dec); 2) correcting bias in the 
frequency and intensity distribution on each different 
method; and 3) rearranging corrected data back to the 
original time series. 

The classical distribution quantile mapping 
(eQM) is expressed by setting the pair with the same 
non-exceedance probability as follow 
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where Q* is the corrected river discharge value, Qraw,C 
is the raw original river discharge value and     stands for 
the inverse function of CDFs of the observed daily 
discharge, and accordingly Fraw,C  as the CDFs of the 
projected river discharge using MRI-
AGCM3.2S.However, for the application of eQM 
method to the future climate condition, if we assume 
that the transfer function is stable and follows the same 
current climate condition. Li et al. (2010) proposed the 
eQM with the difference of CDFs or referred to as 
equidistant CDF matching (EDCDFm) to calculate by 
adding the difference between CDFs of GCM and 
observation river discharge during future climate 
condition as following equation: 
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for the inverse function of CDFs of the observations and 
raw GCMs during present climate period, respectively. 
 Moreover,The gamma distribution with shape 
parameter β  and scale parameter α  is defined as: 
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where  Γ    is the gamma function. In this study, the 
shape and scale parameter were fitted with observation 
and GCMs projection on each calendar month. The 
gQM method is a parametric correction method which 
can be expressed as: 
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Maneeet al. (2016) found the equidistant CDF 

matching (EDCDFm) and the empirical with gamma 
distribution quantile mapping (gQM) methods showed 
the good overall performance and applicable to 
potentially changed climate condition in term of less 
bias of water balance and proper for adjusted peak river 
discharge. 
 
For reservoir operation assessment part aims to estimate 
the future water storage and to evaluate the tendency of 
excess water use (flood risk) and insufficient water use 
(drought risk) by given the bias-corrected river 
discharge based on the methodology of previous section. 
The Flowchart of reservoir simulation procedure for 
calculated future reservoir outflow and storage is shown 
as Fig. 3.  Kim et.al (2009) investigated the adaptability 
of current dam operation rules under climate change 
condition to a dam in the upper part of Tokyo, Japan 
based on AGCM20 input data. The Artificial Neural 
Network (ANN) is selected to learn the past reservoir 
operation and transferred to the machine learning. The 
relationship of storage and reservoirs inflow is important 
to give through covariates (also known as input 
variables) and response variables (also known as output 
variables) is represented as release flow of reservoir.The 
ANN consists of the neurons are organized in layers, 
which are usually fully connected by synapses. A 
synapse can only connect to subsequent layers.The input 
layer consists of all covariates in separate neurons and 
the output layer consists of the response variables. 

 

Fig.3 Flowchart of reservoir simulation for 
future reservoir outflow and storage. 

 
The layers in between input and output layers are 
referred to as hidden layers, as they are not directly 
observable. Input layer and hidden layers include a 
constant neuron relating to intercept synapses. The 
number of hidden layers and numbers of nodes in each 
hidden layer are usually determined by a trial-and-error 
procedure (Govindaraju, R. S., 2000); therefore, the 
output of a node in a layer is only a dependent on the 
inputs it receives from previous layers and the 
corresponding weight. 

This neural network models the relationship between the 
two covariates (inflow and water storage) and the 
response variable outflow.There are twelve neural 
networks which are constructed by separating reservoir 
operation data (reservoir inflow, outflow and water 
storage) into on different each calendar month. For the 
future outflow estimation, the analysis was calculated by 
bias-corrected inflow as an input to reservoir and setting 
the daily loess in the reservoir based on 40 years 
historical reservoir operation. Lastly, the general water 
balance equation was used to calculate the future 
reservoir storage as 

ttttt LossOISS --+=1+
  (8) 

where t stands for the month, 1+tS stands for next day 
reservoir storage, tS is current reservoir storage, tI is 
daily inflow to reservoir, tO  is the daily outflow that is 
acquired from different model structure of ANN and

tLoss  is total daily losses from reservoir. In this study, 
the losses from reservoir were calculated by the 
different water storage from general water balance 
equation and the observed water storage. According to 
the various the future river discharge projection was 
conducted before given to reservoir operation model, the 
initial reservoir storage setting is also important to 
control reservoir storage at the initial condition, So the 
initial reservoir storage condition is defined into three 
different level as follow, normal condition (at 8,250 
MCM), upper rule curve condition on January, 1st (at 
9,494 MCM) and lower rule curve condition on January, 
1st (at 6,405 MCM). 

Results and discussion 

The results of average daily reservoir inflow of bias-
corrected river discharge at Sirikit dam during present 
climate (1979-2003) were summarizes in the flow 
duration curve plot for comparison the characteristic of 
high and low flow between reservoir inflow observation 
and both bias-correctedriver discharge as shown inFig4. 
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Table1 Summary of ensemble simulation name for 
future experiment. 

 
For the changes in river discharge through Sirikit 
reservoir under a changing climate. The majority cases 
of the future annual reservoir inflow are higher than 
present observed Sirikit reservoir except the c1_gQM 
and c2_gQM. The amount of water resources 
availability in the future climate experiment showed that 
the reservoir inflow with SST of c3 pattern reproduce a 
highest value. However, after applying bias-corrected 
reservoir inflow data can cause the contrast of low flow 
occur in the case of reservoir inflow with SST of c2 
pattern as shown in Fig.5 and Fig.6. 

Comparison release flow simulation and observation 
during 1974-2013 

The output of reservoir operation based on the Artificial 
Neural Network (ANN) have been evaluate by 
compared with the observed outflow from 1974-2013. 

 
Fig.4 The total-flow duration curve between 
observation, raw simulation and bias-corrected river 
discharge at Sirikit dam during present climate (1979-
2003). 

 
Fig.5 The total-flow duration curve between 
observation, raw simulation and bias-corrected river 
discharge (gQM method) at Sirikit dam during future 
climate (2075-2099). 

 
Fig.6 The total-flow duration curve between 
observation, raw simulation and bias-corrected river 
discharge (EDCDFm method) at Sirikit dam during 
future climate (2075-2099). 

The best simulated results of average monthly outflow 
and water storage showed a good performance and 
reasonable to utilized for the future release flow 
assessment under the impacts of climate change. Fig.7 
showed that the average outflow simulation performed 
well with the small difference between average outflow 
and water storage. However, the amount of outflow in 
particular month found some error for monthly outflow 
analysis as shown in Fig.8. 

Lastly, the future reservoir storage and outflow 
simulation under different scenarios showed that in 
percentage of changes in Table 2 for water storage and 
Table 3 for water release of different reservoir inflow 
projection data. The limitation of this projection is to 
assume the same rate of downstream water requirement 
and reservoir loss during present climate condition.  
According to the Table 2, the tendency of future storage 
might be decreasing of all scenarios with bias-corrected 
gQM cases of reservoir inflow projection data. 

 

 
Fig.7 The average monthly observed and simulated 
outflow during 1974-2013. 

Bias Correction Method

Future SST setting

Ensemble Mean SST Mean_EDCDF Mean_gQM
Cluster1 SST C1_ EDCDF C1_gQM
Cluster2 SST C2_ EDCDF C2_gQM
Cluster3 SST C3_ EDCDF C3_gQM

Empirical distribution 
quantile mapping

Gamma distribution 
quantile mapping
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Fig.8 Comparison of monthly outflow observation and 
simulation by ANN 

Furthermore, the future storage water storage of bias-
corrected Mean_EQCDFm and c1_ EQCDFm showed 
the decreasing water storage from January until July and 
increasing water storage from August until December. 
For c2_ EQCDFm and c3_ EQCDFm cases showed the 
increasing water storage trend throughout the year. The 
overall water release flow results showed the reasonable 
and matching with the relationship of water storage. For 
instance, the tendency of future water release might be 
decreasing of all scenarios with bias-corrected gQM 
cases. 

Table 2 The percentage of water storage changes on 
each different reservoir inflow projection data. 

 
Table 3The percentage of water release changes on each 
reservoir inflow projection data. 

 
Conclusions 

The tendency of future reservoir inflow after applying 
both the empirical distribution quantile mapping with 
difference between cumulative distribution functions 
(CDFs) of GCM and observation river discharge (eQM) 
and the empirical with gamma distribution quantile 

mapping (gQM) provides higher than present climate 
condition at Sirikit Reservoir. 

Finally, the future reservoir storage and outflow 
simulation under different scenarios showed the 
tendency of future storage might be decreasing of all 
scenarios with bias-corrected gQM cases of reservoir 
inflow projection data. On the other hand, the scenarios 
with bias-corrected eQM cases of reservoir inflow 
projection data presented the increase storage due to 
high reservoir inflow on wet season as similarly with the 
water storage trend analysis.(Maneeet.al, 2015). The 
results indicated that, The SK dam seems to reduce the 
release flow due to decreasing bias-corrected gQM 
reservoir inflow. The overall water inflow and storage 
results showed the reasonable and matching with 
previous studies (Kitpaisalsakuiet.al, 2016). 
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Initial  Storage Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
normal 6,742 6,406 5,900 5,316 4,847 4,675 4,780 5,466 6,406 6,918 6,931 6,776
Upper 2.26 0.36 -0.68 -0.87 -0.28 -0.40 2.14 2.79 4.47 6.57 6.36 5.21
Normal 0.28 -1.69 -3.02 -3.77 -3.80 -4.16 -1.43 0.15 2.83 5.24 5.10 3.93
Lower -1.39 -3.33 -4.64 -5.33 -5.22 -5.43 -2.58 -0.76 2.14 4.68 4.55 3.33
Upper -0.15 -2.17 -3.32 -3.88 -4.22 -3.79 0.15 3.29 3.07 2.28 2.63 1.73
Normal -0.95 -3.01 -4.42 -5.62 -6.43 -6.11 -1.92 1.99 2.53 2.19 2.58 1.68
Lower -2.21 -4.29 -5.75 -7.00 -7.75 -7.32 -3.05 1.15 2.14 1.95 2.38 1.48
Upper 8.94 7.10 6.28 6.52 7.32 7.48 10.36 9.37 11.13 13.12 13.93 13.22
Normal 6.25 4.33 3.17 2.91 3.24 3.30 6.52 6.37 8.91 11.21 12.02 11.24
Lower 4.41 2.52 1.38 1.22 1.73 1.99 5.32 5.41 8.11 10.48 11.29 10.45
Upper 12.35 10.61 9.70 9.15 8.68 9.11 14.15 16.19 15.11 15.36 15.86 15.35
Normal 10.47 8.60 7.27 6.14 5.09 5.30 10.69 13.80 13.51 14.21 14.70 14.18
Lower 8.76 6.84 5.54 4.48 3.73 4.23 9.74 13.05 12.94 13.71 14.19 13.67
Upper -3.15 -5.05 -6.10 -6.01 -4.79 -3.93 -1.93 -2.06 -1.09 0.39 0.13 -0.82
Normal -5.88 -7.91 -9.33 -9.85 -9.22 -8.50 -6.22 -5.33 -3.44 -1.68 -1.91 -2.87
Lower -8.00 -10.02 -11.42 -11.82 -11.04 -10.21 -7.76 -6.60 -4.47 -2.62 -2.83 -3.87
Upper -2.42 -4.24 -5.16 -5.18 -4.89 -3.53 -2.01 -1.39 -0.56 -0.43 -0.40 -1.05
Normal -3.21 -5.05 -6.27 -6.83 -7.02 -5.82 -4.15 -2.84 -1.14 -0.55 -0.46 -1.11
Lower -4.62 -6.51 -7.80 -8.39 -8.51 -7.19 -5.39 -3.81 -1.77 -0.95 -0.80 -1.45
Upper -3.95 -5.83 -7.29 -7.31 -7.23 -6.51 -4.71 -4.89 -2.21 -0.79 -0.71 -1.22
Normal -6.93 -8.88 -10.53 -11.06 -11.21 -10.60 -8.29 -7.77 -4.50 -2.84 -2.75 -3.38
Lower -8.39 -10.25 -11.93 -12.40 -12.45 -11.64 -9.26 -8.57 -5.16 -3.46 -3.39 -3.90
Upper 1.13 -1.08 -2.51 -3.36 -3.77 -3.15 0.55 1.37 1.76 3.54 3.80 3.04
Normal -1.33 -3.65 -5.45 -6.85 -7.74 -7.19 -3.16 -1.42 -0.15 1.86 2.12 1.31
Lower -2.86 -5.10 -6.91 -8.27 -9.07 -8.40 -4.23 -2.34 -0.90 1.19 1.45 0.71
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Scenarios

EDCDFm_c3

gQM_EnsembleMea
n

EDCDFm_Ensembl
eMean

EDCDFm_c1

EDCDFm_c2

Observed

Initial  Storage Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec DrySeason WetSeason Annaul
normal 486 597 690 640 487 354 391 452 342 272 357 367 3,136 2,298 5,434
Upper -0.77 -3.37 -3.73 -3.94 -5.36 -1.12 2.17 7.42 21.03 35.86 10.91 -0.38 -1.19 7.89 2.65
Normal -0.70 -4.14 -1.25 -1.25 -2.30 -2.38 0.10 -2.50 14.93 31.23 10.95 -1.47 -0.35 4.59 1.74
Lower -2.17 -5.36 -2.93 -3.33 -5.37 -3.59 -1.05 -3.62 12.42 30.92 11.04 -0.51 -1.48 2.92 0.38
Upper -2.21 -4.17 -4.58 -2.96 -2.29 -3.05 -3.21 9.51 6.23 -1.51 -1.66 -2.30 -3.20 1.11 -1.38
Normal -2.00 -4.34 -0.70 0.79 -0.87 -4.11 -7.94 1.40 -5.09 -5.07 -1.67 -2.34 -1.59 -3.25 -2.29
Lower -3.96 -4.83 -1.42 0.77 -2.24 -5.14 -8.49 -1.51 -9.94 -8.57 -2.17 -2.95 -2.28 -5.50 -3.64
Upper -0.40 -7.39 -1.69 -1.21 -2.55 4.92 4.88 15.40 24.99 6.21 2.82 1.81 -1.55 8.53 2.71
Normal -1.09 -8.17 0.56 -0.53 -1.19 1.49 2.19 8.65 20.50 5.95 2.86 2.05 -1.14 5.80 1.80
Lower -3.27 -9.29 -1.40 -3.41 -4.30 -0.63 1.24 8.01 20.44 5.82 2.89 3.55 -2.53 4.51 0.44
Upper 5.01 2.38 5.80 9.33 9.77 7.74 16.12 32.71 44.66 19.66 0.32 1.13 4.58 21.41 11.69
Normal 5.07 2.84 9.41 10.79 13.28 5.44 11.22 22.72 36.42 19.57 0.24 0.28 5.66 17.76 10.78
Lower 6.46 1.66 7.52 8.13 8.12 3.48 10.59 21.30 35.50 19.89 0.26 0.25 4.69 15.88 9.42
Upper -3.74 -4.05 -6.53 -8.56 -11.00 -5.80 -1.76 -3.71 -10.73 5.17 -0.37 -2.89 -4.91 -5.24 -5.05
Normal -4.04 -4.10 -4.55 -6.39 -9.76 -7.97 -4.59 -13.68 -13.69 4.34 -0.35 -4.36 -4.26 -8.29 -5.97
Lower -5.73 -5.34 -6.90 -9.63 -11.94 -9.91 -6.16 -14.29 -14.50 3.96 -0.28 -1.95 -5.65 -9.61 -7.32
Upper -6.85 -5.10 -9.90 -11.73 -11.77 -8.51 -4.73 1.71 -3.07 -2.72 -0.18 -11.74 -8.00 -5.05 -6.75
Normal -7.15 -5.07 -6.14 -8.77 -9.62 -9.10 -7.12 -6.66 -15.69 -6.85 -0.18 -11.78 -6.61 -9.11 -7.67
Lower -7.59 -5.37 -6.94 -10.26 -11.85 -10.52 -8.30 -8.59 -21.03 -9.15 -0.20 -12.05 -7.25 -11.45 -9.02
Upper -11.98 -1.64 -7.53 -9.33 -4.99 -10.41 -4.88 -10.47 -20.35 -8.07 -0.90 -15.52 -7.64 -9.53 -8.44
Normal -11.50 -4.04 -6.16 -9.24 -6.00 -12.28 -10.79 -13.16 -22.79 -8.41 -0.95 -13.21 -7.44 -11.97 -9.36
Lower -14.43 -4.37 -7.63 -11.00 -8.58 -14.52 -11.19 -13.34 -22.98 -7.64 -1.10 -17.03 -9.11 -12.91 -10.71
Upper 0.36 1.36 -1.53 -1.70 -6.80 -2.24 -11.40 -7.13 -15.55 -12.53 0.26 -7.28 -1.19 -8.92 -4.46
Normal 0.23 0.89 1.23 -0.20 -6.41 -5.04 -15.15 -15.71 -19.38 -12.62 0.30 -7.37 -0.39 -12.18 -5.38
Lower -2.97 0.05 -0.04 -2.25 -8.22 -7.04 -15.72 -16.39 -19.61 -12.91 0.14 -9.48 -2.01 -13.17 -6.73
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