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Abstract The large scale reservoir plays an important
role in modern water resources management by
regulating the water to address severe flood and drought
problems. Therefore, the proper planning of water
resource availability based on uncertainty climate
change impact is very necessary. The objective of this
study is to evaluate the changes of water storage and
outflow based on present and past operation with the
different future reservoir inflow data by using
Atmospheric  General  Circulation model (MRI-
AGCM3.2S) forcing data which is jointly developed by
Meteorological Research Institute of Japan and Japan
Meteorological Agency. For each 20-km grid cell, the
surface runoff generation of MRI-AGCM3.2S was used
to simulated river discharge at the Sirikit reservoir by a
distributed flow routing model (1K-FRM) based on the
kinematic wave theory. In this study, distribution
mapping methods are applied to raw daily river
discharge simulated data for remove systematic bias
between model and observed data. After bias correction
to daily discharge achievement, the future corrected
reservoir inflow of different scenarios were given to
reservoir operation model algorithms and using the
Artificial Neural network (ANN) for calculation the
future release flow and reservoir storage based on
remain the downstream water requirement and amount
of water losses in this reservoir same as present climate
condition. The evaluation of future reservoir operation
based on present rule curve will show the necessary
decision way to revise or improve current operation to
adapt to probably water resources availability.
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Introduction

Water is indispensable for all forms of life and is
needed, in large quantities, in almost all human
activities. According to the 2013 Intergovernmental
Panel on Climate Change (IPCC), the global water cycle
will change, with increases in disparity between wet and
dry regions, as well as wet and dry seasons, with some
regional exceptions. Water resources is an increasingly
limited and highly essential resource for many countries
where agriculture is the main income of the economy
corresponding with ensures the well-being of the people.
The proper planning of water resource availability based
on uncertainty climate change impact is very necessary;
because, the projection of hydrologic inflow data can
support and help government stakeholder and reservoir
operator to adapt their decision making to release the
water subjected to the rule or constraint in advance and
be consisted of the sustainable development plan in
future. The large scale reservoir plays an important role
in modern water resources management by regulating
the water to address severe flood and drought problems.
It is the effective tool to store water when severe flood
occurs for mitigation of the huge loss, damage of lives
and economics. Not only the excess water resource
problem, but the inadequate water supply in Thailand
also experienced the extreme drought. Therefore, to
investigate the current reservoir operation is an
important and interested finding to respond to future
climate change for water management effectively and
cope with future flood event as well. Therefore, the
proper planning of water resource availability based on
uncertainty climate change impact is very necessary.
The objective of this study is to evaluate the changes of
water storage and outflow based on present and past
operation with the different future reservoir inflow data
by using Atmospheric General Circulation model (MRI-
AGCM3.2S).

Study area

The Sirikit reservoir with coverage catchment area of
13,130 km? is located of the midstream of Nan River
basin in Thailand as shown in Fig.1. The upstream of
the Sirikit reservoir is a mountainousarea which is not
affected by major flow regulations or any other direct
human activities impacts.
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Fig.1 Map showing the study area, reservoir location
and spatial 20 km x 20 km square grid of MRI-
AGCM3.2sS.

The continuous time series data of observed inflow into
the reservoir is available for the period of 1974-2013 (40
years). Its climate is tropical with distinctly clear dry
and wet seasons. The seasons are defined as follows: the
dry season starts from November until April and the wet
season starts from May until October.

Methodology

The overall of this research can be divided into river
discharge prediction part and reservoir operation
assessment part for present and future climate scenarios.
To estimate river flow for water resource assessment,
the hydrological model is widely represented the
interaction between hydrologic cycle element such as
precipitation, soil  Moisture, river flow and
evapotranspiration. Several impacts of climate change
studies with distributed hydrological model were
conducted at the Chao Phraya River Basin in Thailand
(Wichakul et al., 2015; Hunukumbura and Tachikawa,
2012). In this study, the 1K-FRM distributed flow
routing model was chosen to handle input spatial data
such as gridded rainfall; therefore, this model can
applicable to access reservoir inflow under a changing
climate as well. 1K-FRM is originated development in
Hydrology and Water Resources Research Laboratory at
Department of Civil and Earth Resources Engineering,
Kyoto University.1K-FRM is a distributed flow routing
model based on kinematic wave flow approximation.
The kinematic wave model is conduct to all rectangular
elements gridded to link the water to downstream
associate with the derived catchment model. Basically,
the selecting of Digital Elevation Model (DEM) data
used in catchment model is HydroSHEDS (Hydrological
data and maps based on SHuttle Elevation Derivatives at
multiple Scales) provides hydrographic information in a
comprehensive and consistent format for both local and
global-scale applications (Lehner, 2006).1K-FRM used
30 arc-second resolutions (approximately 1 kilometer at

near equator area) as a catchment model. The flow
direction is defined into 8 directions which assigns flow
depends on the different elevation with in a direction of
steepest downward slope as illustrated in Fig. 2.The
basic kinematic wave equation for each rectangular
slope elements is

AL NQ_
oo s At (1)

where t denotetime; A is the cross-sectional
area;Q is discharge; and g, (x.t) is the lateral inflow per
unit length of each slope element. Another equation
used to solve above equation is the relationship of
Manning type of the discharge and a rectangular cross-
section area of each cell as follows:
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where i, is slope gradient; n is the Manning’s
roughness coefficient; and B is the width of the flow.
There are two main parameters inside 1K-FRM model
which consist of the Manning’s roughness coefficient
for the slope unit ns and Manning’s roughness
coefficient for the river channel unit cell n,. In this
study, the parameter of n; = 0.03 m™*s and n, = 0.1 m’
35 were used for the suitable values.

General circulation models (GCMs) have been
commonly used in climate change impact studies. The
several studies of application to use GCMs in Chao
Phraya River Basin and surrounding River Basin were
conducted. For instance, Hunukumbura and Tachikawa
(2012) utilized the runoff projected by MRIAGCM3.1S,
which showed the increasing of extreme discharge at the
upper part of Chao Phraya River Basin and the
decreasing of monthly discharge in October at the Pasak
River basin. Kure and Tebakari (2012) showed the
increased tendency of the mean annual river discharge
and annual maximum daily flow at the NakhonSawan
station located at the downstream of the four major
rivers in the in upper Chao Phraya River Basin using the
precipitation and temperature projected by MRI-
AGCM3.1S and MRI-AGCM3.2S. Champathong et al.
(2013) assessed the uncertainty of river flow projections
using the outputs of MRIAGCM3.1S and MRI-
AGCM3.1H.Kitpaisalsakuiet al. (2016) also used MRI
GCM data to assesses the impact of climate change on
reservoir operation in Central Plain Basin of Thailand.

The GCM outputs used for this research were
gridded runoff generation data from MRI-AGCM 3.2S
(Mizuta et al., 2012), where ‘S’ refers to super-high
resolution developed by Japan Meteorological Agency
(JMA) and the Meteorological Research Institute (MRI).
The AGCMs grids covering the Sirikit reservoir study
area were total of 88 grids (8 columns and 11 rows) with
the spatial resolution 0.1875 degree (approximately 20
km), located between the latitude of 17 degrees 42
minutes and 19 degrees 35 minutes north and the
longitude of 100 degrees 7 minutes and 101 degrees 26
minutes east.To obtain the high resolution of climatic
forcing data is to used downscaling technic by an
atmospheric general circulation model (Kitoh et al.,
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2015).The high-resolution that is obtain the observed or
projected sea surface temperature (SST) as boundary
condition. This type of mechanism simulations, which
uses the observed present day inter-annually varying
SST plus ensemble mean future SST changes obtained
by CMIP-class models, can minimize the effects of
climate model bias. Based on the SST data of 28 CMIP5
model, the different SST spatial patterns are analyzed by
a cluster analysis of these 28 CMIP5 model. After that,
the 28 CMIP5 modelclassified into 3 clusters from 8, 14
and 6 models of cluster 1, cluster 2 and cluster 3,
respectively.

That model has a horizontal resolution of
triangular truncation 959 (TL959) and a vertical
resolution of 64 levels (top at 0.01 hPa) to transform
grid uses 1920* 960 grid cells with corresponding to
approximately a 20 km grid interval. The 20-km mesh
MRI-AGCM3.2 was employed in each 25-year time-
slice experiment for the present-day climate (1979-
2003) and late 21stcentury climate (2075-2099)
scenarios with the Representative Concentration
Pathway (RCP) 8.5 that refers to the final radiative
forcing achieved by the year 2100 around 8.5 watts per
square meter (W/m?).Moreover, the cluster analysis also
analyzed the ensemble SST to classify the characteristic
pattern of SST into three groups as following 1) cluster
1: Uniform warming in the tropics zone pattern or in the
both hemispheres, 2) Cluster 2: Larger warming over the
central equatorial Pacific (so-called EI Nino-like
pattern) and 3) Cluster 3: Larger warming in the north
Indian Ocean and north-west Pacific pattern. Therefore,
the future climate projection was combined of different
SST (4 future SSTs) to assess the uncertainty of future
water availability.However, for 20 km grid output data
provide a new cumulus convection scheme (Yoshimura
et al, 2015), called the “Yoshimura scheme” only. For
each 20-km grid cell, the wvarious hydrological
components of MRI-AGCM 3.2S such as precipitation,
evaporation, transpiration and surface runoff generation
were calculated through the land surface scheme as
shown in Fig 2.The runoff generation of MRI-
AGCM3.2S was used to simulated river discharge at the
Sirikit reservoir by a distributed flow routing model
(1K-FRM)  based on the kinematic  wave
theory(Tachikawa and Tanaka, 2013).All period of
simulation has been performed at a spatial resolution of
1 km and temporal resolution of one day. For the
verification data, the observed time series of daily
inflow was obtained from the Electricity Generating
Authority of Thailand (EGAT).

A recent bias correction method based on a
relationship of cumulative distributions (CDFs) of the
GCMs and observation data has been commonly used
for hydrologic simulations and climate change
studies.The distribution mapping technique adjusts all
particles of the cumulative distribution function (CDF)
of projected data with GCM outputs by using the CDF
of observation and construct a transfer function to
convert the projected data using GCMs to corrected
data.
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Fig.2 The river
simulation.

a) Land surface generation data of MRI-AGCM3.2S fed
into river discharge simulation in a grid. b) Schematic
drawing of a catchment and flow routing model using

HydroSHEDS DEM.

framework diagram discharge

All bias correction methods of quantile mapping have to
initiate by 1) sorting long-term observation and
simulation river discharge data to create CDFs for each
calendar month (Jan-Dec); 2) correcting bias in the
frequency and intensity distribution on each different
method; and 3) rearranging corrected data back to the
original time series.

The classical distribution quantile mapping
(eQM) is expressed by setting the pair with the same
non-exceedance probability as follow

Q*c = E)bl,C (F;aW,C(QmW,C )) (3)

where Q* is the corrected river discharge value, Qraw,C
is the raw original river discharge value and  stands for
the inverse function of CDFs of the observed daily
discharge, and accordingly Fraw,C as the CDFs of the
projected river discharge using MRI-
AGCM3.2S.However, for the application of eQM
method to the future climate condition, if we assume
that the transfer function is stable and follows the same
current climate condition. Li et al. (2010) proposed the
eQM with the difference of CDFs or referred to as
equidistant CDF matching (EDCDF,,) to calculate by
adding the difference between CDFs of GCM and
observation river discharge during future climate
condition as following equation:

Q* = QraW,P +
[FOIJJS.,C (Fraw, P (Qraw,P )) - Fr;\}v,c (FraW,P (Qraw, P ))] (4)

where, QrawpiS the original river discharge value for the
future projection period. The Fgi . and Fry, o stand
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for the inverse function of CDFs of the observations and

raw GCMs during present climate period, respectively.
Moreover,The gamma distribution with shape

parameter s and scale parameter ¢ is defined as:

—X
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where T' is the gamma function. In this study, the

shape and scale parameter were fitted with observation
and GCMs projection on each calendar month. The
gQM method is a parametric correction method which
can be expressed as:
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Maneeet al. (2016) found the equidistant CDF
matching (EDCDFm) and the empirical with gamma
distribution quantile mapping (gQM) methods showed
the good overall performance and applicable to
potentially changed climate condition in term of less
bias of water balance and proper for adjusted peak river
discharge.

For reservoir operation assessment part aims to estimate
the future water storage and to evaluate the tendency of
excess water use (flood risk) and insufficient water use
(drought risk) by given the bias-corrected river
discharge based on the methodology of previous section.
The Flowchart of reservoir simulation procedure for
calculated future reservoir outflow and storage is shown
as Fig. 3. Kim et.al (2009) investigated the adaptability
of current dam operation rules under climate change
condition to a dam in the upper part of Tokyo, Japan
based on AGCM20 input data. The Artificial Neural
Network (ANN) is selected to learn the past reservoir
operation and transferred to the machine learning. The
relationship of storage and reservoirs inflow is important
to give through covariates (also known as input
variables) and response variables (also known as output
variables) is represented as release flow of reservoir.The
ANN consists of the neurons are organized in layers,
which are usually fully connected by synapses. A
synapse can only connect to subsequent layers.The input
layer consists of all covariates in separate neurons and
the output layer consists of the response variables.

Observed River Discharge | —— |T"_';
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Fig.3 Flowchart of reservoir simulation for
future reservoir outflow and storage.

The layers in between input and output layers are
referred to as hidden layers, as they are not directly
observable. Input layer and hidden layers include a
constant neuron relating to intercept synapses. The
number of hidden layers and numbers of nodes in each
hidden layer are usually determined by a trial-and-error
procedure (Govindaraju, R. S., 2000); therefore, the
output of a node in a layer is only a dependent on the
inputs it receives from previous layers and the
corresponding weight.

This neural network models the relationship between the
two covariates (inflow and water storage) and the
response variable outflow.There are twelve neural
networks which are constructed by separating reservoir
operation data (reservoir inflow, outflow and water
storage) into on different each calendar month. For the
future outflow estimation, the analysis was calculated by
bias-corrected inflow as an input to reservoir and setting
the daily loess in the reservoir based on 40 years
historical reservoir operation. Lastly, the general water
balance equation was used to calculate the future
reservoir storage as

S,y =8,+1,-0,- Loss, 8

where t stands for the month, S, stands for next day
reservoir storage, .S, is current reservoir storage, 7,is
daily inflow to reservoir, ¢, is the daily outflow that is

acquired from different model structure of ANN and
Loss, is total daily losses from reservoir. In this study,

the losses from reservoir were calculated by the
different water storage from general water balance
equation and the observed water storage. According to
the various the future river discharge projection was
conducted before given to reservoir operation model, the
initial reservoir storage setting is also important to
control reservoir storage at the initial condition, So the
initial reservoir storage condition is defined into three
different level as follow, normal condition (at 8,250
MCM), upper rule curve condition on January, 1st (at
9,494 MCM) and lower rule curve condition on January,
1st (at 6,405 MCM).

Results and discussion

The results of average daily reservoir inflow of bias-
corrected river discharge at Sirikit dam during present
climate (1979-2003) were summarizes in the flow
duration curve plot for comparison the characteristic of
high and low flow between reservoir inflow observation
and both bias-correctedriver discharge as shown inFig4.
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Tablel Summary of ensemble simulation name for
future experiment.

Bias Correction Method Empirical distribution |Gamma distribution

quantile mapping quantile mapping

Future SST setting

Ensemble Mean SST Mean_EDCDF Mean_gQM
Clusterl SST C1_EDCDF Cl_gQM
Cluster2 SST C2_EDCDF C2_gQM
Cluster3 SST C3_EDCDF C3_gQM

For the changes in river discharge through Sirikit
reservoir under a changing climate. The majority cases
of the future annual reservoir inflow are higher than
present observed Sirikit reservoir except the c1_gQM
and c2 gQM. The amount of water resources
availability in the future climate experiment showed that
the reservoir inflow with SST of ¢3 pattern reproduce a
highest value. However, after applying bias-corrected
reservoir inflow data can cause the contrast of low flow
occur in the case of reservoir inflow with SST of c2
pattern as shown in Fig.5 and Fig.6.

Comparison release flow simulation and observation
during 1974-2013

The output of reservoir operation based on the Artificial
Neural Network (ANN) have been evaluate by
compared with the observed outflow from 1974-2013.
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Fig.5 The total-flow duration curve between

observation, raw simulation and bias-corrected river
discharge (gQM method) at Sirikit dam during future
climate (2075-2099).
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Fig.6 The total-flow duration curve between

observation, raw simulation and bias-corrected river
discharge (EDCDF,, method) at Sirikit dam during
future climate (2075-2099).

The best simulated results of average monthly outflow
and water storage showed a good performance and
reasonable to utilized for the future release flow
assessment under the impacts of climate change. Fig.7
showed that the average outflow simulation performed
well with the small difference between average outflow
and water storage. However, the amount of outflow in
particular month found some error for monthly outflow
analysis as shown in Fig.8.

Lastly, the future reservoir storage and outflow
simulation under different scenarios showed that in
percentage of changes in Table 2 for water storage and
Table 3 for water release of different reservoir inflow
projection data. The limitation of this projection is to
assume the same rate of downstream water requirement
and reservoir loss during present climate condition.
According to the Table 2, the tendency of future storage
might be decreasing of all scenarios with bias-corrected
gQM cases of reservoir inflow projection data.
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Average - 452.86)

Mar  Apr  May  du Jul  Aug  Sep Ot Nov  Dec

e Simulated Reservoir Outflow[MCM]

Average= 451.41

Jan. Feb

Mar  Apr May

Fig.7 The average monthly observed and simulated
outflow during 1974-2013.
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Fig.8 Comparison of monthly outflow
simulation by ANN

Furthermore, the future storage water storage of bias-
corrected Mean_EQCDFm and c1_ EQCDFm showed
the decreasing water storage from January until July and
increasing water storage from August until December.
For c2_ EQCDFm and c3_ EQCDFm cases showed the
increasing water storage trend throughout the year. The
overall water release flow results showed the reasonable
and matching with the relationship of water storage. For
instance, the tendency of future water release might be
decreasing of all scenarios with bias-corrected gQM
cases.

Table 2 The percentage of water storage changes on
each different reservoir inflow projection data.

Scenarios | Initial Storage | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
Observed __|normal 6742 6406 5900 5316 4847 4675 4780 5466 6406 6918 6931 6176
o Upper 226 036 068 087 028 040 214 279 447 G657 636 521
“)C'):K;::“’mh' Normal 028 169 302 377 -380 -416 -143 015 28 524 510 393
Lower 139 333 464 533 522 543 258 076 214 468 455 333

Upper 015 217 832 388 -422 879 015 829 307 228 263 173

EDCDFm el |Normal 095 801 442 562 643 611 192 199 253 219 258 168
Lower 221 429 545 100 175 182 305 115 214 195 238 148

Upper 894 710 628 652 732 748 1036 937 1113 1312 1398 1322
EDCDFm_ 2 |Normal 625 433 817 201 324 330 652 637 891 1121 1202 1124
Lower 441 252 138 122 173 199 532 541 811 1048 1129 1045

Upper 1235 1061 970 915 868 911 | 1415

EDCDFm_c3  |Normal 1047 860 727 614 509 530 1069 1380 1851 1421 1418
Lower 876 681 554 448 373 423 974 1306 1294 1841 1419 1367

Upper 315 505 610 601 479 393 193 206 -L09 039 013 082
“Q“’E“"""""l“”“‘ Normal 588 7191 933 985 923 850 622 -533 344 168 191 287
Lower 800 1002 1142 1182 1104 1021 .76 -660 447 262 283 387

Upper 242 420 516 518 489 353 201 189 056 043 040 105

£QM_c1 Normal 321 505 -627 683 702 582 415 281 -l14 055 046 L1l
Lower 462 651 180 B39 85l 119 539 881 177 095 080 -145

Upper 395 583 729 181 723 651 471 489 221 079 071 122

2QM_c2 Normal 693  -888 1058 1106 -1121 1060 820 777 -450 284 275 -3.38
Lower 839 1025 1193 <1240 1245 1164 996 857 516 346 339 -390

Upper 118 108 251 386 847 315 055 137 176 854 880 304

5QM_c3 Normal 133 <365 545 685 104 119 316 -l42 015 186 212 131
Lower 286 510 -691 827 907 -840 423 234 090 119 145 071

Table 3The percentage of water release changes on each
reservoir inflow projection data.
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Conclusions

The tendency of future reservoir inflow after applying
both the empirical distribution quantile mapping with
difference between cumulative distribution functions
(CDFs) of GCM and observation river discharge (eQM)
and the empirical with gamma distribution quantile

mapping (gQM) provides higher than present climate
condition at Sirikit Reservoir.

Finally, the future reservoir storage and outflow
simulation under different scenarios showed the
tendency of future storage might be decreasing of all
scenarios with bias-corrected gQM cases of reservoir
inflow projection data. On the other hand, the scenarios
with bias-corrected eQM cases of reservoir inflow
projection data presented the increase storage due to
high reservoir inflow on wet season as similarly with the
water storage trend analysis.(Maneeet.al, 2015). The
results indicated that, The SK dam seems to reduce the
release flow due to decreasing bias-corrected gQM
reservoir inflow. The overall water inflow and storage
results showed the reasonable and matching with
previous studies (Kitpaisalsakuiet.al, 2016).
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